Balancing Chemical Equations

CaCO₃ 4 CaO + CO₂

PROGRAMMED UNIT IN CHEMISTRY

POWELL

2 KC103 - 2 KC1 + 3 00

$$2 \text{ Mg}^{+} \text{ O}_2$$
 2 Mg^{0} 2 Mg^{0} $2 \text{ Hg}^{+} \text{ Hg}^{+} + 2 \text{ Hg}^{0}$ 2 Hg^{+} 2 Hg^{-} 2 Hg^{-}

PRENTICE-HALL, INC.

$$A1_2(80_4)_3 + 3 Ca(0H)_2 \rightarrow 2 A1(0H)_3 + 3 Caso_4 1$$

Programmed Unit in Chemistry BALANCING CHEMICAL EQUATIONS

by

E8961707

(4)

Virginia P. Powell Niskayuna High School Schenectady, New York

	Page
Molecular Equations	2
Ionic Equations	15
Calculating Oxidation State of an Element	34
Oxidation-Reduction Equations	45
Nuclear Equations	62

Objectives for this Unit

The purpose of this set is to help you learn how to balance chemical equations and how to use the conventional symbols which chemists employ in equation writing. You will also learn why balance must be achieved in chemical equations, but you will not be required in this unit to predict whether certain reactions occur or to indicate why reactions occur.

It is assumed that you can write the formulas of most substances if you are given the name of the substance. This also implies that you can give from memory the symbols of important elements. Your teacher will specify whether you should be prepared to write the formulas for substances from memory or whether you may have a Reference Table available.

<u>Instructions</u> to the <u>Student</u>

Programmed instruction is a method of helping you learn better and more easily. You proceed in small steps, check yourself at each step, make few errors, and work at your own speed. The form of programmed instruction may make it look like a test, but this is not a test. This is a method of teaching yourself. You will not be graded on the responses you make while learning. However, you will be held responsible at a later time for mastery of the content of this unit.

Printed in the United States of America.

05529-E

^{© 1965,} by PRENTICE-HALL, INC., Englewood Cliffs, New Jersey. All rights reserved.

MOLECULAR EQUATIONS

Instructions to the Student

This set will teach you how to balance a molecular equation, if you know what the reaction is. In addition to a Periodic Table and this program, you need a sheet of paper and a pen. When you come to the blank spaces, write on your answer sheet the word or expression which best completes the thought. Your instructor will tell you whether to write your response in the book or on a separate sheet of paper.

1. The substances that are involved in a chemical reaction are called the reactants. The materials present at the beginning of a chemical reaction are called the
reactants 2. The new substance on substances formed by the charity in the charit
2. The new substance or substances formed by the chemical reaction are
known as products. The reactants undergo chemical change to form
products
3. In the burning of charcoal, carbon and oxygen combine to form carbon dioxide. Carbon and oxygen are the Carbon dioxide is the
reactants product
4. Let us translate the word statement of the chemical reaction of the burning of charcoal into chemical and mathematical symbols.
On your answer sheet write a chemical or mathematical symbol to stand for as many words as you can in the following statement. Carbon and oxygen produce carbon dioxide.
$C + O_2 \qquad CO_2$
5. The symbol which means "forms" "vields" "produces" or a similar

expression is - . Insert this symbol in your equation.

~		0		00
C	+	U ₂	\rightarrow	CO ₂

6. Oxygen forms diatomic molecules by covalent bonding, and the element
always has the formula O ₂ . The other elements which commonly form
diatomic molecules are

In any order H2, N2, Cl2, F2, Br2, I2, and probably At2

7. If you did not know from memory that these elements form diatomic molecules, continue with this item. If you answered the item correctly, you may go on to item 8.

A memory device, in which the first letter or letters of each word stands for one of the diatomic gases, is as follows: <u>I Bring Clay From Our New House</u>. Write the formulas for the diatomic elements suggested by this memory device.

I₂, Br₂, Cl₂, F₂, O₂, N₂, H₂

8. Since matter is neither created nor destroyed in ordinary chemical reactions, you should check that an equation shows the same $\underline{\text{kinds}}$ and numbers of atoms among the reactants and products. Begin checking systematically with the first formula in the equation.

 $C + O_2 \rightarrow CO_2$ 1 C atom = 1 C atom ---- O atom(s) = ---- O atom(s)

- 2 O atoms = 2 O atoms (Since the kinds and numbers of atoms are in balance on both sides of the equation, or on each side of the \rightarrow sign, the equation is already balanced. Most equations do not balance so easily; you must make further adjustments.)
- 9. There are two steps in writing a balanced equation. The first is converting the word statement to a symbolic statement. Write a statement in symbols for the reaction in which sodium combines with chlorine to form sodium chloride, _______.

Na + Cl₂ → NaCl

$Mg + O_2 \rightarrow MgO$
15. Do not change these formulas; they are correct. To bring the equation into balance, adjust only coefficients. Checking the first term
$\underline{\hspace{1cm}}$ $Mg = \underline{\hspace{1cm}}$ Mg
1 Mg = 1 Mg
16. The magnesium balances so far. Is the oxygen in balance?
\
No, $O_2 \neq O$ therefore for
17. Mg + O_2 \rightarrow MgO are required.
18. The coefficient 2 in 2 MgO affects the Mg as well as the O so the left side of the equation needs to be adjusted Mg + $O_2 \rightarrow 2$ MgO
$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
19. Checking all atoms for final balance
$\underline{\hspace{1cm}}$ Mg = $\underline{\hspace{1cm}}$ Mg
O =O
2 Mg = 2 Mg (The equation is balanced.) 2 O = 2 O
20. Potassium chlorate decomposes in the presence of heat and a catalyst, manganese dioxide, to produce potassium chloride and oxygen. Write a symbolic statement for the reaction. (A catalyst affects a chemical reaction but is not changed itself.)
+

KClO ₃	-	KCl	+	O_2

21. Check the balance of atoms.

 K	=	K
Cl	=	Cl
O	=	0

$$1 K = 1 K$$

 $\begin{array}{ccccc}
1 & C1 &=& 1 & C1 \\
but & 3 & O & \neq & 2 & O
\end{array}$

22. To balance the O atoms

X	3	0	=	X	2	0
 , ,	0	0		 	-	_

$$2 \times 3 O = 3 \times 2 O$$

23. Substituting these coefficients in the equation, you obtain

2 KClO₃ → KCl + 3 O₂

24. This disturbs the previous balance of K and Cl, therefore a coefficient is required before KCl.

$$2 \text{ KClO}_3 \rightarrow \underline{\hspace{1cm}} \text{ KCl} + 3 \text{ O}_2$$

$$2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$$

25. Recheck the balance

$$2 K = 2 K$$

$$2 C1 = 2 C1$$

$$6 O = 6 O$$

26. The equation is balanced. Reread the original statement of the reaction: Potassium chlorate decomposes in the presence of heat and a catalyst, manganese dioxide, $\mathrm{MnO_2}$, to form potassium chloride and oxygen. In equation writing the conditions under which the reaction occurs are indicated above or below the arrow (\rightarrow), and sometimes both above and below. Chemists use the symbol † to indicate that a product (not a reactant) in a reaction is a gas.

Since one of the products, oxygen, is a gas, an t is needed. Rewrite the equation showing the conditions under which the reaction takes place and show the vertical arrow for the gaseous products.
$2 \text{ KClO}_3 \xrightarrow{\Delta}_{\text{MnO}_2} 2 \text{ KCl} + 3 \text{ O}_2^{\dagger}$
27. Calcium carbonate decomposes under heating to yield calcium oxide and carbon dioxide. Write the formulas for the reactants and products.
$CaCO_3 \rightarrow CaO + CO_2$
28. Check the balance of atoms ———————————————————————————————————
1 Ca = 1 Ca 1 C = 1 C 3 O = 3 O (1 from CaO and 2 from CO ₂)
29. The equation is balanced but does not describe the conditions of the reaction. The complete reaction is CaCO ₃ — CaO + CO ₂
$CaCO_3 \Delta CaO + CO_2 \dagger$
30. Aluminum and copper (II) nitrate in solution yield aluminum nitrate and copper. Step 1: Write correct formulas + + + +
Al + $Cu(NO_3)_2$ \rightarrow Al(NO_3) ₃ + Cu B1. Step 2: Check and balance Al = Al Cu = Cu NO ₃ = NO ₃

1 Al = 1 Al 1 Cu = 1 Cu If a radical does not decompose in chemical reaction the whole radical can be treated as a single unit. 2 $NO_3 \neq 3 NO_3$
32. Balance \times 2 NO ₃ = \times 3 NO ₃
$3 \times 2 \text{ NO}_3 = 2 \times 3 \text{ NO}_3$
33. Substituting coefficients Al + Cu(NO ₃) ₂ \rightarrow Al(NO) ₃ + Cu
Al + $3 \text{ Cu(NO}_3)_2 \rightarrow 2 \text{ Al(NO}_3)_3 + \text{Cu}$
34. But now A1 = A1
$\begin{array}{l} 1 \text{ Al } \neq 2 \text{ Al} \\ 3 \text{ Cu} \neq 1 \text{ Cu} \end{array}$
35. The adjusted coefficients areAl + 3 $Cu(NO_3)_2 \rightarrow 2 Al(NO_3)_3 + Cu$.
$2 \text{ Al} + 3 \text{ Cu(NO}_3)_2 \rightarrow 2 \text{ Al(NO}_3)_3 + 3 \text{ Cu}$
36. Metals are insoluble in water and therefore are precipitated. A precipitate is indicated by +. Chlorine reacts with a solution of potassium iodide to form iodine and potassium chloride. + + +
$\text{Cl}_2 + \text{KI} \rightarrow \text{I}_2 + \text{KCl}$
37 C1 = or \(\neq \) C1 ?
2 Cl ≠ 1 Cl
38. Therefore, the reaction is written $Cl_2 + KI \rightarrow I_2 + \underline{\qquad} KCl.$

$CI_2 + KI \rightarrow I_2 + 2 KC1$
39 $K = or \neq 2 K$?
1 K ≠ 2 K
40. Cl_2 + $\text{KI} \rightarrow \text{I}_2$ + KCl
$\text{Cl}_2 + 2 \text{ KI} \rightarrow \text{I}_2 + 2 \text{ KCl}$
41. Now recheck each element
C1 = C1
$ \underline{\qquad} K = \underline{\qquad} K \\ \underline{\qquad} I = \underline{\qquad} I $
2 C1 = 2 C1
2 K = 2 K $2 I = 2 I$
42. The equation is balanced. Iodine is only slightly soluble in water. Indi-
cate this in the equation.
++++
Cl ₂ + 2 KI \rightarrow I ₂ + + 2 KCl 43. Silver nitrate and harium chloride wield beginned it at the second state of the second sta
43. Silver nitrate and barium chloride yield barium nitrate and a precipitate of silver chloride.
+ + +
$AgNO_3 + BaCl_2 \rightarrow Ba(NO_3)_2 + AgCl +$
44 $Ag = or \neq $ $Ag ?$ $NO_3 = or \neq $ $NO_3 ?$
1.03
1 Ag = 1 Ag
$1 \text{ NO}_3 \neq 2 \text{ NO}_3$ $45 \qquad \text{AcNO} + \text{BoCl} \qquad \text{BoCl}$
45 $AgNO_3 + BaCl_2 \rightarrow Ba(NO_3)_2 + AgCl +$

$2 \text{ AgNO}_3 + \text{BaCl}_2 \rightarrow \text{Ba(NO}_3)_2 + \text{AgCl}_4$
46. Now 2 Ag \neq 1 Ag so
$2 \text{ AgNO}_3 + \text{BaCl}_2 \rightarrow \text{Ba(NO}_3)_2 + \underline{\hspace{1cm}} \text{AgCl} +$
$2 \text{ AgNO}_3 + \text{BaCl}_2 \rightarrow \text{Ba(NO}_3)_2 + 2 \text{ AgCl}_4$
47. Rechecking
- Ag = $-$ Ag
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Ba = Ba
C1 = C1
2 Ag = 2 Ag
$ \begin{array}{lll} 2 & \text{NO}_3 &= 2 & \text{NO}_3 \\ 2 & \text{Ba} &= 2 & \text{Ba} \end{array} $
2 Cl = 2 Cl (The equation is balanced.)
48. The rules for equation writing require that you know the correct
for each of the reactants and products.
formulas
49. You then make the equation conform to the Law of Conservation of Matt
so that the number of atoms of every element in the reactants is the same a
among the products. You do this by adjusting the coefficients preceding the
formulas.
number of atoms of every element
50. Gaseous products are indicated (symbol). Precipitates are indicated
(symbol) and the conditions of the reaction are written (where)
(WAIGE C)

此为试读,需要完整PDF请访问: www.ertongbook.com

\dagger above or below the arrow $(-)$.
51. Write balanced equations for the following reactions, first checking your answer for the correct formulas, then going on to adjust coefficients. Any errors should be self evident. Zinc and sulfuric acid $(\mathrm{H_2SO_4})$ form hydrogen and zinc sulfate.
++
$Zn + H_2SO_4 \rightarrow H_2t + ZnSO_4$ (The equation is balanced as written.)
52. Mercuric oxide decomposes on heating to form mercury and oxygen+
(a) $HgO \rightarrow Hg + O_2^{\dagger}$ (b) $2 HgO \rightarrow 2 Hg + O_2^{\dagger}$
53. Zinc chloride and ammonium sulfide form ammonium chloride and zinc sulfide (a precipitate).
++++
(a) $\operatorname{ZnCl}_2 + (\operatorname{NH}_4)_2 \operatorname{S} \rightarrow \operatorname{NH}_4 \operatorname{Cl} + \operatorname{Zns} \downarrow$ (b) $\operatorname{ZnCl}_2 + (\operatorname{NH}_4)_2 \operatorname{S} \rightarrow 2 \operatorname{NH}_4 \operatorname{Cl} + \operatorname{ZnS} \downarrow$
54. Calcium carbonate and hydrochloric acid (HCl) form calcium chloride + water + carbon dioxide.
$CaCO_3 + HC1 \rightarrow CaCl_2 + H_2O + CO_2\dagger$
Check each element systematically beginning at the left.
Ca = Ca
$CO_3 = CO_3 =$
1 Ca = 1 Ca
$1CO_3^{=} \neq 0$ $CO_3^{=}$ $(CO_3^{=}$ radicals do not occur among the products)
55. When a radical decomposes, you must check each element in the radical separately.
C = C
O = O

A S SECTION OF ST. ST.
1 C = 1 C $3 O = 3 O (2 \text{ from } CO_2 + 1 \text{ from } H_2 O)$
56. The total number of atoms of an element is the same on both sides of an equation, no matter how it is distributed among products or reactants. Continue checking: $H = $ H
1 H ≠ 2 H
57. $CaCO_3 + \underline{\hspace{1cm}} HC1 \rightarrow CaCl_2 + H_2O + CO_2 \dagger$
$CaCO_3 + 2 HC1 \rightarrow CaCl_2 + H_2O + CO_2^{\dagger}$
58Cl =Cl
$2\ Cl=2\ Cl$ (The equation is apparently balanced as now written, but check again. When you adjust several coefficients, you may make careless errors.
59. Balance the equation for the following reaction: sodium hydroxide and ammonium chloride form sodium chloride, ammonia (NH_3) , and water.
+++++
(a) NaCH - NH Cl - NaCh - NH - H C

- (a) NaOH + NH₄Cl \rightarrow NaCl + NH₃† + H₂O
- (b) The equation is balanced in (a). There are 5 H on the left, 1 from NaOH and 4 from NH₄Cl. There are 5 H on the right, 3 from NH₃ and 2 from H₂O.
- 60. Balance the equation for the following reaction: potassium and water form hydrogen and potassium hydroxide.

- (a) K + HOH → H + KOH (In reactions showing the replacement of some of the hydrogen in water by active metals, it is wise to write the formula for water as HOH. This reminds you that not all of the hydrogen reacts. The product is a hydroxide not an oxide, KOH not K2O.)
- (b) $2 \text{ K} + 2 \text{ HOH} \rightarrow \text{H}_2 \text{ }^{\dagger} + 2 \text{ KOH}$

61. Balance the equation for the following reactions: aluminum sulfate and calcium hydroxide — aluminum hydroxide and calcium sulfate.
+++
(a) $\operatorname{Al}_2(\operatorname{SO}_4)_3 + \operatorname{Ca}(\operatorname{OH})_2 \rightarrow \operatorname{Al}(\operatorname{OH})_3 + \operatorname{CaSO}_4^{\dagger}$ (b) $\operatorname{Al}_2(\operatorname{SO}_4)_3 + 3 \operatorname{Ca}(\operatorname{OH})_2 \rightarrow 2 \operatorname{Al}(\operatorname{OH})_3 + 3 \operatorname{CaSO}_4^{\dagger}$
62. Phosphoric acid $(\rm H_3PO_4)$ neutralizes barium hydroxide to form water and barium phosphate.
+++
(a) $2H_3 PO_4 + Ba(OH)_2 \rightarrow HOH + Ba_3 (PO_4)_2$ (b) $2H_3 PO_4 + 3 Ba(OH)_2 \rightarrow 6 HOH + Ba_3 (PO_4)_2$
63. Hydrocarbons, compounds containing hydrogen and carbon, are among our most important fuels. The complete combustion or oxidation of hydrocarbons produces carbon dioxide and water. Methane, $\mathrm{CH_4}$, the simplest hydrocarbon, is a major component of natural gas. Write a balanced equation for the reaction in which methane combines with oxygen to form carbon dioxide and water.
++
(a) $CH_4 + O_2 \rightarrow CO_2 + 2 H_2 O$ (b) $CH_4 + 2 O_2 \rightarrow CO_2^{\dagger} + 2 H_2 O^{\dagger}$
64. Propane, C_3H_8 , is a gaseous hydrocarbon which liquefies easily. It is sold as "bottled gas" for cooking and heating. Write an equation to describe the reaction which occurs when propane
burns+
(a) $C_3 H_8 + O_2 \rightarrow CO_2^{\dagger} + H_2 O$ (b) $C_3 H_8 + 5 O_2 \rightarrow 3 CO_2^{\dagger} + 4 H_2 O^{\dagger}$
65. Another useful hydrocarbon is octane, C_8H_{18} . You may recognize octane as an ingredient of gasoline. Write a balanced equation for the complete combustion of octane.
+++

$$C_8 H_{18} + O_2 \rightarrow CO_2 + H_2 O$$

The first trial balance produces C_8H_{18} + ? O_2 \rightarrow 8 CO_2 + 9 H_2O

The products indicate that 25 atoms of oxygen are required, 16 from 8 CO_2 and $9 \text{ from } 9 \text{ H}_2\text{ O}$. For 25 atoms of oxygen we need 12 1/2 molecules of diatomic oxygen, O_2 . Since we usually show whole molecules, not fractions of a molecule, we clear the equation of fractions by multiplying every term by 2.

$$2 \times 1 C_8 H_{18} + 2 \times 12 1/2 O_2 \rightarrow 2 \times 8 CO_2 + 2 \times 9 H_2 O$$

or in final form $2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2^{\dagger} + 18 H_2 O^{\dagger}$

This method is used whenever fractional numbers of molecules occur.

66. Acetylene, $C_2 H_2$, another kind of hydrocarbon, is used in welding torches because of the great energy released in its burning.

Write a balanced equation to show this reaction.

+____+

(a)
$$C_2 H_2 + O_2 \rightarrow CO_2 + H_2 O$$

(b)
$$C_2 H_2 + 2 1/2 O_2 \rightarrow 2 CO_2^{\dagger} + H_2 O^{\dagger}$$

(c)
$$2 C_2 H_2 + 5 O_2 \rightarrow 4 CO_2^{\dagger} + 2 H_2 O$$

You have learned the principles of balancing molecular equations. Now return to the beginning of the program and work through it again, writing out your answers. Also, as you work through the set, outline in your notebook the important principles for balancing molecular equations. After you have balanced each equation a second time, copy the correctly balanced equation in your notebook. This will provide you with a handy reference of correctly balanced equations. The set includes important and typical examples of the major kinds of chemical reactions.

If you find an equation difficult or "impossible" to balance, you have probably made an error in writing one of the <u>formulas</u>. Use your checklist for formula writing.

IONIC EQUATIONS

Instructions to the Student

Ionic equations are used to show the change of ions into molecules or the reverse. They are also used in double replacement reactions to show the formation of gases, precipitates, or weakly ionized substances. They are not used to show oxidation-reduction reactions; electronic equations are used for that purpose.

It is assumed that you can balance molecular equations and can distinguish between ionically and covalently bonded substances. You should be able to define acid, base, salt, and ion.

You need a Periodic Table and reference material, including the solubilities of common salts and the relative degree of ionization of common acids and bases.

1.	The	react	tion	betwee	n met	allic	so	dium	and	gase	eous	chl	orine	produ	ices
ion	icall	y bon	ded	sodium	chlo	ride.	. It	is of	ten	easi	er to	wr	ite an	d bala	ınce
the	equa	ation	in m	olecul	ar for	m fi	rst.	Wr	ite a	a mol	lecul	ar	equati	on for	· this
rea	action	n.													

2. In ionic equations the state and molecular or ionic form are indicated. The state (solid, liquid, or gas) is indicated by (s) for solid, and (g) for gas. The symbol (1), for liquid is often omitted. The symbol (aq) indicates the particle is in water solution and is an abbreviation for aqueous.

The reaction under consideration is written

$$2 \operatorname{Na}_{(s)} + \operatorname{Cl}_{2(g)} \rightarrow 2 \operatorname{Na}_{(s)}^{+} + 2 \operatorname{Cl}_{(s)}^{-}$$
 or

$$2 \text{ Na}_{(s)} + \text{Cl}_{2(g)} \rightarrow 2 (\text{Na}^+ \text{Cl}^-)_{(s)}$$

Using these conventions write first a molecular and then an ionic equation for the reaction between zinc and sulfur.

 +	 	-		
 +	 		+	

$$Zn + S \rightarrow ZnS$$

 $Zn_{(s)} + S_{(s)} \rightarrow Zn^{++}_{(s)} + S_{(s)}^{=} \text{ or } (Zn^{++}S^{=})_{(s)}$

3. The reaction between carbon and oxygen is written

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

Note that none of these substances are ionic. Also note that when (g) is used, the † is omitted.

Write an equation for the formation of sulfur trioxide from oxygen and sulfur dioxide.

$$O_2 + 2 SO_2 \rightarrow 2 SO_3$$

 $O_2_{(g)} + 2 SO_2_{(g)} \rightarrow 2 SO_3_{(g)}$

4. Ionic equations are very useful in describing the ionization of acids. Polar covalent hydrogen chloride reacts with covalent water to form the hydronium ion and the chloride ion. This is written

$$HCl_{(g)} + H_2O \rightarrow H_3O^+ + Cl_{(aq)}$$

The mixture of hydronium and chloride ions is known as hydrochloric acid. Since hydrochloric acid is highly ionized, the — is longer than —.

Water reacts with hydrogen bromide to form hydrobromic acid. Write an ionic equation for this reaction.

$$H_2O + HBr_{(g)} \rightarrow H_3O^+ + Br_{(aq)}^-$$

5. Substances which form two hydronium ions are also written this way.

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4(aq)$$

 $HSO_4(aq) + H_2O \rightarrow H_3O^+ + SO_4(aq)$

$$H_2SO_4 + 2 H_2O \rightarrow 2 H_3O^+ + SO_4^-$$
 (aq)

Write an ionic equation for the reaction in which hydrogen sulfide reacts with water to form the hydronium ion and the hydrogen sulfide ion.

$$H_2S_{(g)} + H_2O \rightarrow H_3O^+ + HS^-_{(ag)}$$

6. The HS (aq) further reacts with water to form an additional hydronium ion and the sulfide ion. Write an ionic equation for this reaction.

_____ + ____ + ____ + _____ + ____