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Preface

One of the main purposes of this monograph is to highlight the key role
played by abstract analysis in simplifying and solving some fundamental
problems in stochastic theory. This effort is analogous to a similar one
published over a decade ago. The presentation is in a research-expository
style, with essentially complete details, to make the treatment self-contained
so as to be accessible to both graduate students seeking dissertation topics
and other researchers desiring to work in this area. The aim is to give a
uniied and general account for a selected set of topics covering a large part
of stochastic analysis. A central thread running through all the articles here
is employment of functional analytic methods.

The work presented in the following six chapters is not only a unified
treatment, but each one contains a substantial amount of new material ap-
pearing for the first time. They are devoted to both the random processes
and fields, Gaussian as well as more general classes, with some serious ap-
plications and also several indications of them at several places. A more
detailed synopsis of each chapter appears in the Introduction and Overview
that follows immediately. All chapters have been reviewed.

It is hoped that these results will stimulate further research in these
areas. In preparing this volume, I received considerable assistance from
Dr. Y. Kakihara and Ms. Jan Patterson, as well as the authors. This is
much appreciated. I also wish to thank CRC Press for their enthusiastic
cooperation in publishing this book on schedule.

M. M. Rao



Contents

Preface

Introduction and Overview
M. M. Rao

1 Transport Properties of Gaussian Velocity Fields
René A. Carmona

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Introduction

Gaussian Velocity Fields

Infinite-Dimensional Ornstein-Uhlenbeck Processes
Transport Problems

Numerical Simulations

The Case of White Velocity Fields

Open Mathematical Problems

Stochastic Flows and SPDEs

Bibliography

vii

9

9

12
16

23
31
37
43
45
53

2 Planar Stochastic Integration Relative to Quasimartingales 65
Michael L. Green

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction

The Bochner Bounding Measure for V-Quasimartingales
Line Integrals

The Mixed Integral

The Double Integral

The Jx-Measure

A Stochastic Green Theorem

Bibliography

3 Probability Metrics and Limit Theorems in AIDS
Epidemiology
S. T. Rachev, V. Haynatzka, and G. Haynatzki

3.1
3.2
3.3
3.4
3.5

Introduction

The Monge-Kantorovitch Problem and Probability Metrics
Ideal Metrics

Spread of AIDS Among Drug Users and Probability Metrics
The Spread of AIDS Among Interactive Transmission Groups
Bibliography

65
74
95
118
123
135
145
157

159

160
166
183
200
208
217



4 Higher Order Stochastic Differential Equations 225
M. M. Rao

4.1 Introduction 225
4.2 Stochastic Integrals and Boundedness Principles 227
4.3 Linear Stochastic Differential Equations 232
4.4 Higher Order Nonlinear Equations 245
4.5 Infinitesimal Characteristics of Solutions 253
4.6 Refined Analysis with Brownian Noise 263
4.7 Operator Representation of the V-Process 277
4.8 Sample Path Behavior for Larg2 Time 286
4.9 Aspects of Stochastic Flows 290
4.10 Multiparameter Analogs and SPDEs 292
Bibliography 301
5 Some Aspects of Harmonizable Processes and Fields 303
Randall J. Swift
5.1 Introduction 303
5.2 Preliminaries 304
5.3 Part I: Second Order Nonstationary Processes Including
the Harmonizable Class 307
5.4 Part II: Some Classes of Harmonizable Random Fields 327
Bibliography 361

6 On Singularity and Equivalence of Gaussian Measures 367
N. Vakhania, and V. Tarieladze

6.1 Definitions and Auxiliary Results 368
6.2 Kakutani’s Theorem 372
6.3 Gaussian Measures on R 375
6.4 General Gaussian Measures 376
6.5 The Case of Topological Vector Spaces 384

Bibliography 387

Index 391



Introduction and overview

M. M. Rao

The material of the following chapters, presented in a research-expository
style, consists of recent advances in some key areas of stochastic analysis
wherein real (= functional) analysis methods and ideas play a prominent
role. The topics discussed are detailed with numerous references bringing
the reader to current research activity in the subject, and at the same time
pointing out several problems that lead to promising investigations. This is
particularly helpful for graduate students as well as other researchers who
would pursue work in the areas covered in the following chapters. These
appear in stochastic theory, and moreover interesting new functional anal-
ysis problems are suggested by the former. The current work complements
the studies of a previous volume, published a decade ago, and concentrates
on areas mostly considered since that time and includes certain topics that
could not be treated then. Some important applications are also presented
now and they motivate new areas of potential interest. Let us discuss the
material of the chapters in some detail giving an overview of the topics to
potential readers.

1. The first chapter, written by Carmona, is on stochastic modeling use-
ful to several important problems, of interest in applications, along with an
account of the underlying theory. Thus a comprehensive model that can be
specialized to describe several stochastic flows, including Brownian, Jaco-
bian and Manhatten flows as well as the mass transport, is discussed. This
general model is defined by the following (nonlinear first order) stochastic
differential equation:

dX, = 7 (t, X,)dt -+ V2xdB,, (1)

where {B;,> 0} is a d-dimensional Brownian motion, x > 0, and
{¥(t,z),t > 0,z € R%} is itself a Gaussian random field on Rt x R? of the
following type. For each t > 0, 7 (t,-) : R* — R? is stationary and for each
z € R4, 7 (-,z) has an extension to R — R?, which is again stationary so
that the covariance function of ¥, say T, satisfies:

I(s,z;t,y) =T(s—t,z —y), (2)

a d x d-positive definite matrix. The values of interest for the first variable
are s,t > 0, to be identified as time and z,y € RY as space variables. Here
['(-,-) is assumed integrable on R x R? so that it has (a.e. Leb.) a spectral
density. Under various specializations, the author discusses the solutions of

1



2 Introduction and Overview

(1). It is applied, with x = 0 resulting in a Gaussian velocity field, to shear
Brownian and Manhatten flows, and their transport properties. If ¥ (¢, z) =
—az and 2k = b2, the solution of (1) is an Ornstein-Uhlenbeck process. This
is described first for the one-dimensional case and then extended to finite
dimensions with 25 = B as a positive definite matrix and a = A a square
matrix. This motivates a study of an infinite dimensional O.U. process
with B as a positive definite operator on the state space of the B;-process
(a Hilbert space H) and A as a linear operator on it. If A is a partial
differential operator, then one gets a representation of the solution of the
stochastic PDE (or SPDE) as:

Rl

(z, X2) = (z, Xo) — /0 (Az, X,)ds + W (xjo1)2), 3)

for each z € dom(A), W(-) being a Brownian motion process.

Several applications of the solution process are considered. Numerical
simulations are also discussed. Applications to mass transport are given
using the theory of ODE (especially utilizing the Lyapounov exponents —
indeed, for the ODE in Banach spaces Lyapounov and Bohl exponents play
a key role as seen from Dalecky and Krein (1974), p.116 ff). A discussion of
SPDE in this context is included, along with diffusion approximations, and
a good collection of related papers are in the bibliography. Several unsolved
problems are also pointed out at various places. In fact the paper is based
on a series of lectures given by the author recently, and the freshness of the
exposition is maintained.

2. One of the important reasons to separate the index of the process X
in the above work as Rt x R? is to treat the first component as time and
all the stochastic differentials (or integrals) are defined relative to this one-
dimensional parameter, and the existing theory suffices. If it is multidimen-
sional, there are several new problems and multiple stochastic integration
and its properties are needed. The second chapter, written by Green, ad-
dresses this problem if the index is a two-dimensional parameter, and hence
planar stochastic integrals are studied. Such integrals relative to a Brown-
ian sheet have been developed in a fundamental paper by Cairoli and Walsh
(1975), and for an extended analysis in SDEs these have to be obtained for
more general integrators than Brownian sheets that include, for instance,
(sub)martingales. To take into account all such cases, Green develops a
planar integration relative to quasimartingales, using a generalized bound-
edness principle, originally due to Bochner (1955). An extension of the work
of Cairoli and Walsh presents several problems involving conditions that are
automatic in the Brownian case, but must be suitably formulated to have
the desired generality.

The extended Bochner boundedness principle may be stated as follows.
Let X : [a,b] = LP(P), p > 0 be a (random) function, O C B([a,b]) ® L a



Introduction and Overview 3

o-subalgebra, p; : R = R*,i = 1,2, increasing functions, and a : @ = K+
a o-finite measure. Then X is said to be L¥¥2-bounded relative to @ and
a, if there exists some constant K(= Ky, 4,0, > 0) such that for each

simple function f = Z::OI QiX(titig)r @St <1ty <--- <1, <bone has:

n—-1
Blpa(r() < K | oy P10 T = T ai(X (ta) - X (). (@

=0

If p1(z) = pa2(z) = 2%, then X is termed L?2-bounded. For a Brownian
motion X, one can take O = B([a, b]) ® (8,1), and o = Leb.® P, so that X
is L*2-bounded (with K = 1 and equality in (3)). It can also be shown that

a square integrable submartingale is L#?-bounded with O, a predictable
o-subalgebra and o a suitable o-finite measure on O, for (4). Thus an
L¥1%2_.bounded X qualifies to be a stochastic integrator and a dominated
convergence theorem is valid. Green considers planar integrals relative to
such general integrators, namely quasimartingales, and extends most of the
Cairoli-Walsh theory under a suitable condition called “cross-term domina-
tion”. This is satisfied not only for Brownian sheets, but also for square
integrable two parameter martingales as well as many quasimartingales.
Then he develops stochastic line and surface integrals, a Fubini type the-
orem, and moreover a (stochastic) Green theorem. Further a definition of
stochastic partial differential is given. These results will be of considerable
interest in a study of SPDEs in accordance with Walsh’s (1984) account. All
the basic work with complete details for the latter study is thus contained
in this somewhat long article.

3. A different approach to stochastic modeling via probability metrics
is the subject of Chapter 3 by Rachev, Haynatzka and Haynatzki. This is
particularly useful for studies of large sample behavior and weak conver-
gence of processes. These metrics are of two kinds, namely those depending
on distributions of single random variables and those depending on joint
distributions of two or more random variables. Typical examples are the
classical Lévy and Fréchet metrics, i.e., if X,Y are the random variables
with distributions Fix, Fy then the Lévy metric is:

LX,Y)=inf{e >0: Fx(z—¢) —e < Fy(z) < Fx(z +¢€),z€ R}, (5)

and the Fréchet or convergence in probability metric is:

_ X -Y] - lz -yl
X, Y) = /;, Trx-r¥ = /R T+ -yt xr@u). (6

These two cases are generalized to wide classes of probability (semi)metrics.
Keeping the applications in mind the triangle inequality is weakened. Thus
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if p: $ xS — R' is a mapping, let

(@)p(z,y) =0 & («)z =y, (i)p(z,y) = p(y, 2),
(##8)p(z, y) < klp(z, 2) + p(v, 2)], VZ,¥,2 € S, and some k > 1.

This p is termed a quasi-(semi)metric. Further one can use some ideas of
abstract analysis and define several classes of such metrics. For instance,
if o : R = R is a generalized Young function satisfying a As-condition
for large values, then define for any random variables X,Y with valyesin a
metric space (S, d):

po(X,Y) = /Q o(d(X,Y))dP )
or

Po(X,Y) =inf{e > 0:p(Fx(z) — Fy(z +¢)) <¢,
o(Fy(z) — Fx(z +¢)) <¢, z€ R}. (8)

All these and their generalizations play important roles in the (weak) con-
vergence of stochastic processes. Analysis with many of these (quasi)metrics
has been extensively carried out by many people, including V. M. Zolotarev
and especially Rachev himself together with several collaborators. In this
paper first a very readable account of probability metrics, their numerous
applications, and an extensive bibliography are included. Also the authors
make a novel application of these metrics in obtaining some limit theorems
for two problems in the spread of AIDS. This is done first for discrete time,
and then the results are extended to continuous time by an approximation
where the model now consists of a system of stochastic differential equations
depending on a parameter N, for a fixed number (here 4) of communities.
Then as N — oo, they establish that the number of infectives in each class
converges to the unique solution of a Liouville type SDE. All the assump-
tions of the model and the underlying methodology are presented. There is
an extensive bibliography on related work.

4. Chapter 4, written by me, is devoted exclusively to higher order SDEs.
First order equations starting with the Langevin’s, have been generalized in
the literature to nonlinear equations using the full development of the It6
calculus and its extension to square integrable martingales. However, the
second and higher order equations, which similarly start with the motion of
a simple harmonic oscillator, have not received a corresponding treatment.
The linear constant coefficient case has been studied by Dym (1966) who
noted that, with white noise process as driving force, they exhibit special
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features that are not seen in the first order case. He discussed the existence
of solutions of an equation of the form

aX(t) il L))
i +a -1 +

R G"X(t) = E(t), (9)

with a; as constants, written symbolically, but may be interpreted rigorously
in integrated form as:

/ o)L X (B))dt = / dB(t), (10)
R R

where L, = aoj% + ---+ a, is a differential opretor, ¢ a smooth function
of compact support, and dB(t) = &(t)dt, B(t) being Brownian motion. The
existence of a distributional solution can be established and shown to be
Markovian. The sample path analysis uses this property through semi-
group theory, but now the associated infinitesimal generator of the latter is
found to be a degenerate elliptic differential operator. This is a characteristic
feature of the higher order cases.

To consider the corresponding nonlinear problem, it is necessary to define
the derivative of X in the sense of mean and present conditions in order
to interpret it in the pointwise sense as well. Only then the higher order
SDEs can be studied. This and a generalization of the linear time dependent
coefficient case (i.e., the a; of (9) are a;(t) now) are treated in some detail in
this chapter. Considering the second order case, for simplicity, the nonlinear
form of (9) is studied:

dX(t) = q(t, X (¢), X (t))dt + o(t, X (1), X (+))dB(®), (11)

where g, o are coefficients satisfying certain Lipschitz type conditions. The
desired solution is an absolutely continuous process, for the driving force
{B(t),t > 0} which is now taken as an L??-bounded process in the sense
of (3) above. In this form it is shown that (11) has a unique absolutely
continuous solution, and if moreover the B(-)-process has independent in-
crements then the solution is also Markovian. Next the B(-) is specialized to
Brownian motion and an analysis of the associated semigroup is presented.
This time one has to consider weighted continuous function space as the
domain of this semigroup which however is not strongly continuous. The
infinitesimal operator is again a degenerate elliptic operator with coefficients
as functions of t,z,y. Analysis of these PDEs is difficult and many prob-
lems are pointed out for future investigations. A few results on the path
behavior are then given. This work leads to multiparameter analogs (the
solutions being random fields) and the SPDEs wherein the ideas and results
of Chapter 2 can be utilized. But much of this remains to be explored.
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5. An analysis of random processes and fields, which need not be Brown-
ian but are square integrable, is considered in Chapter 5 by Swift. Most
of the work here is related to several generalizations of (weakly) station-
ary processes and fields using the Fourier analysis methods and ideas. The
central class is what is known as the harmonizable family. Thus a family
{X:,t € R*} is a harmonizable random field if it can be expressed as:

Hy= /R _erdz (), (12)

where Z(-) is a random measure on (the Borel o-ring of) R* with val-
ues in L?(P). Here one takes E(X:) = 0 = E(Z()\)) for simplicity. If
F(\X) = E(Z(\)Z())), then F defines a bimeasure. If F has finite Vitali
variation, then X is called strongly harmonizable, and weakly harmonizable
field otherwise. If moreover the covariance r(s,t) = E(X,X) is unchanged
under rotations then X is isotropic. It is also possible to consider the
increments of the process (field) to have the harmonizability and isotropy
properties. In fact most of the questions investigated in the stationary case
can be asked for the harmonizable families (cf., e.g., Yaglom (1987)). It
should be noted that the covariance representation

r(s,t) = / /R . giwx- A gpiy X7 (13)

is in the Lebesgue sense only when F has finite Vitali variation. Other-
wise one has to use a weaker Morse-Transue integration, suitably modified.
The former is used in the strongly harmonizable case, and the latter for
the weakly harmonizable ones. Now the structure of both these classes is
discussed in detail in this chapter. Also treated are periodically correlated
processes, local continuity, and almost periodicity of the sample paths. A
recent general account of the basic theory of such processes, in multidi-
mensions, is given by Kakihara (1997), and the current chapter essentially
complements it. A large part on fields generalizes the work in Yadrenko
(1983).

The analyticity of harmonizable random fields, and sampling theorems
as well as the Cramér classes are treated here. Also discussed are integral
(spectral) representations of fields with m‘?-order increments of this class.
Further harmonizable spacially isotropic random fields are treated. Some
multidimensional extensions are briefly described. Several problems in the
area that await future investigation are pointed out at various places. The
account gives a comprehensive view of the area along with an extended
bibliography for related studies.

6. The final chapter is devoted to the Gaussian dichotomy problem by
Vakhania and Tarieladze. There are several proofs of the dichotomy theorem
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in the literature. Here the authors present a simpler argument than before,
avoiding any usage of conditioning which appears at least in invoking the
martingale convergence before. An interesting aspect now is that the result
is reduced to Kakutani’s (1948) theorem on infinite product measures. The
authors reformulated this result, for uncountable sets of probability mea-
sures, to use it in their dichotomy proof. Some refinements of others’ works
are also obtained from these ideas.

The authors then proceeded to present simple proofs of the assertions
of the following type for measures on general locally convex topological
vector spaces (LCTVSs). For instance, let X be a real LCTVS and G C
X* be a set of continuous linear functionals that separate points of A'. If
o(G) is the smallest o-algebra of X'* relative to which all elements of G are
measurable, then a pair of Gaussian measures on o(G) (i.e., po f~},vo f~1!
are Gaussian probabilities on R for each f € G) satisfy the dichotomy
theorem. Thereafter conditions in terms of mean and covariance operators
for equivalence of u,v are presented. This work gives a fresh approach to
an old problem, and harvests some consequences.

It is thus evident that real analysis methods play a fundamental role in
all the works presented here. Moreover, there are places where the stochas-
tic theory raises new questions of abstract analysis such as for SPDEs, not
strongly continuous semigroup study, and degenerate elliptic operator the-
ory itself. One expects that this interaction will help advance both subject
areas as well as their applications.
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Chapter 1

Transport Properties of
Gaussian Velocity Fields

René A. Carmona!

Abstract

The purpose of these lecture notes is to describe several
mathematical problems which arise in the study of the statis-
tical properties of the solutions of the equation:

ng = V(t,Xt)dt + V2KdB¢

when {¥(¢,x); t > 0,x € R?} is a mean zero stationary and
homogeneous Gaussian field and {By; t > 0} a process of Brow-
nian motion. We are mostly interested in velocity fields with
spectra of the Kolmogorov type. The study is motivated by
problems of transport of passive tracer particles at the surface
of a two-dimensional medium. We are mostly concerned with
the mathematical analysis of problems from oceanography and
we think of the surface of the ocean as a physical medium to
which our modeling efforts could apply.

1.1 Introduction

The purpose of these notes is to present in a more or less informal manner
a set of mathematical problems which arise in the study of the statistical
properties of the solutions of the equation:

lPartially supported by ONR N00014-91-1010

9



10 CHAPTER 1. TRANSPORT PROPERTIES OF GAUSSIAN FIELDS

dX, = ¥(t, X,)dt + V2xdB, (1.1)

when {¥(¢,x); t > 0,x € R%} is a mean zero stationary and homogeneous
Gaussian field, &« > 0 and {B;; t > 0} is a d-dimensional process of Brow-
nian motion. Except for the last section, in which we discuss stochastic
partial differential equations (SPDE for short), we shall restrict ourselves
to the case k = 0. Moreover, most of our efforts will be devoted to the case
of velocity fields with spectra of the Kolmogorov type. This assumption is
motivated by problems of fluid mechanics. Instead of considering velocity
fields which are solutions of the Navier-Stokes equation, we use the dynam-
ical approach and assume from the beginning that {V(t,x)} is a stationary
and homogeneous random field. According to Kolmogorov’s theory of well-
developed turbulence (i.e., for systems with high Reynolds numbers), this
assumption is well founded. See, for example, Chapters 6 and 7 in [36] for
an excellent account of this theory in a modern perspective. We shall add
the assumption that the velocity field is Gaussian. As proven by the results
of many wind velocity measurements, this is a very reasonable assumption.

Our main concern is the analysis of the transport of passive tracers at
the surface of a two-dimensional medium. We are mostly interested in the
mathematical modeling of problems from oceanography and we think of
the surface of the ocean as a physical medium to which our modeling efforts
could apply. For this reason we shall sometimes use the terminology drifters
or floats for the passive tracers.

Transport properties of time-independent velocity fields have been stud-
ied both from a theoretical point of view and via computer simulations.
The results have been reported in many publications. See, for example, the
recent works [34] or [35]. The latter cannot be compared to ours because the
time-independence of the velocity field drastically changes the nature of the
simulation algorithms and the typical properties of the tracers. At this stage
it is important to emphasize the differences between the two approaches.
It is very often the case that the terminology disordered systems or ran-
dom media is used for models in which the randomness is autonomous (i.e.,
time independent). The analysis of such systems is most naturally done by
first studying the properties of the randomness and exhibiting properties
of the random parameters of the model, which almost surely hold. Then
the mathematical analysis is performed in a very classical manner, by fixing
the values of the environment and then studying the system as if it were
deterministic. This approach is rarely possible for time-dependent random
models. Indeed, probabilistic-like arguments are needed throughout the
analysis.

Closer to our point of view are the theoretical results obtained and the
numerical simulations performed in the case of Brownian flows. See [47], [7],



