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The theory of rings, algebras and their representations has evolved into a well-defined subdiscipline
of general algebra, combining its proper methodology with that of other disciplines and thus leading
to a wide variety of applications ranging from algebraic geometry and number theory to theoretical
physics and robotics.

Due to this, many recent results in these domains were dispersed in the literature, making it very hard
for researchers to keep track of recent developments.

In order to remedy this, Algebras and Applications aims to publish carefully refereed monographs
containing up-to-date information about progress in the field of algebras and their representations,
their classical impact on geometry and algebraic topology and applications in related domains, such
as physics or discrete mathematics.

Particular emphasis will thus be put on the state-of-the-art topics including rings of differential
operators, Lie algebras and super-algebras, groups rings and algebras, C* algebras, Hopf algebras
and quantum groups, as well as their applications.



Preface

Group rings are very interesting algebraic structures. Their importance be-
came apparent after the work of T. Molien, G. Frobenius, I. Schur and H.
Maschke in the beginning of the last century. The central role they play in
group representation theory was established by E. Noether and R. Brauer
in the period 1927-1929. Since then, group rings became an independent
subject in their own right.

Besides the obvious relationship with group theory and ring theory, the
study of group rings involves the theory of fields, linear algebra and algebraic
number theory. It should be noted that group rings are also related to alge-
braic topology, homological algebra, and algebraic K-theory. More recently,
they have found applications in algebraic coding theory. Hence, the theory
of group rings provides a subject where many branches of algebra come to
a rich interplay — which is especially suitable for a graduate course.

This book is intended as an introduction to the general theory and is
addressed primarily to students who wish to learn these topics. It should
take the reader from beginning to research level. Given the development
that the area has already had, and the active state of research, a book with
such an aim cannot be comprehensive. We do think, however, that after
this course a student will feel motivated and prepared to read the several
research level books, now in print, as well as research articles.

Since we tried to write a course rather than an exposition of the theory,
we made an effort to provide the reader with motivations, a flavour of its
historical development, a broad overview of the subject and a hint of its
applications. In the beginning chapters we were careful to provide many
details so that expressions such as “it is easy to see that” appear only when
this is in fact the case. The final chapters are of a more advanced nature
and often cover topics that so far have appeared only as articles in scientific
journals. As we approach the present state of research, in later chapters, we
expect the reader to be more at ease with the subject, so some details are
left to his efforts. Even so, we do try to keep the book accessible. Whenever

ix
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possible, we offer new proofs for known results.

We assume only a minimum of prerequisites and, though the reader is
expected to have some maturity in algebra - as acquired after a first year of
graduate studies - we begin practically from scratch. Our first two chapters
start from the definitions of groups and rings, respectively, and cover all
the background on these two subjects that will be needed in the rest of the
book. Due to the obvious limitations of time and space, however, we could
not cover all the necessary background; elements of the theory of fields and
linear algebra are the most obvious absences. The basic results on algebraic
number theory that are needed are carefully stated in section 2.8, but no
proofs are given.

In Chapter IIT we finally introduce group rings and many of the notions
that will become the fundamental tools for the rest of the book. Chapters
IV and V cover the basics of group representation theory and characters,
and explore the connections between this theory and the structure of group
algebras. In section 5.2, we use character theory to enter the discussion
of the isomorphism problem. In particular, we use it to establish the nor-
mal subgroup correspondence and to show that a group determined by its
character table is a solution of the isomorphism problem.

The most basic properties of ideals in group rings are given in Chapter
VI. Much more ground could have been covered here, as this aspect of
the theory has been and continues to be extensively studied. Due to the
introductory nature of the book, we decided to keep our treatment within
narrow limits, but the reader can pursue the matter further, for example
in Passman’s book [126]. Chapter VII deals with several types of algebraic
elements in group rings as a preparation for Chapter VIII, where we begin
the study of the structure of the unit group.

In Chapter IX we discuss the isomorphism problem. In addition to the
best known results, like the Whitcomb Theorem, that have already appeared
in other books on the subject, we give Sandling’s arguments showing that
unit groups of finite rings, such as finite linear groups, are solutions of the
isomorphism problem. We include a brief account of a recent counterexam-
ple due to Hertweck. This is followed by a discussion of the isomorphism
problem in the modular case, giving a modified approach to results of Bagin-
ski on isomorphic group algebras of metacyclic p-groups over the field with
p-elements. Finally, in Chapters X and XI, we return to the study of the
structure of the unit group. We first discuss the existence of free subgroups
of rank two in this group and then study some of its algebraic properties.

The exercises given at the end of most sections vary from routine to more
challenging problems. Several of them are taken from published papers and
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frequently come with hints. We also include the appropriate references in
case the reader feels the need for a more detailed explanation.

We wish to thank our colleague Matthias Neufang for all the help he
gave us so generously with our TEXnical problems.

It is a pleasure to acknowledge the generous support of our work by
NSERC, Canada and FAPESP, Brazil. Finally, we are indebted to our
friends A. Giambruno, G. Lee, Y. Li, G. Nebe, M. Parmenter and F. Szecht-
man who read various parts of the manuscript and made many excellent
suggestions.

Edmonton and Sao Paulo

Summer 2001
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Chapter 1

Groups

1.1 Basic Concepts

The famous memoir Réflections sur la résolution algébrique des équations,
published by J.L. Lagrange in 1770, followed by papers of P. Ruffini and
N.H. Abel, attracted the attention of working mathematicians to the concept
of permutations (or linear substitutions, as they were called at that time).
In his classical work of 1830, E. Galois was the first to consider groups
and subgroups of permutations, using the term group in its modern sense -
though restricted to permutations - and introducing such concepts as those
of normal subgroup, solvable group, etc.

A. Cauchy was a pioneer in understanding the relevance of permutation
groups as an independent subject. He wrote a series of interesting papers
about them, in the period 1844-1846.

Influenced by Cauchy’s work, A. Cayley recognized that the notion of
a group could be formulated in a more abstract setting and gave the first
definition of an abstract group in 1854 [22]. This paper is considered by
several authors (e.g. N. Bourbaki [14] or M. Kline [83]) as the beginning of
abstract group theory. It is a relatively short work, but it contains a number
of important features:

e Gives an abstract definition of a group, in multiplicative notation.
e Introduces the table of an operation.

e Shows that there exist two non-isomorphic groups of order four, giving
explicit examples.
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e Shows that there exist two non-isomorphic groups of order six, one of
them being commutative and the other isomorphic to S3, the group of
permutations of three elements.

e Shows that the order of every element is a divisor of the order of the
group.

However, the paper attracted no attention at that time and, though
many subsequent works were devoted to the subject, the interest was on
applications rather than abstract theory. Especially noteworthy is the clas-
sical work of C. Jordan Tratité des sustitutions et des équations algébriques,
published in 1870, where he organized the knowledge on the topic and added
some fundamental new results. In particular, the notion of isomorphism and
homomorphism of groups was explicitly stated there for the first time.

Finally, the definition of an abstract group that we use today was given
by W.v. Dyck, a student of F. Klein, in 1883 [37] and a slightly different
formulation was given in the same year by H. Weber [173] who later included
this definition in his most influential 1886 book Lehrbuch der Algebra.

Several independent sets of axioms for abstract groups, which are minor
variations of each other, were later given by E.V. Huntington, E.H. Moore
and L.E. Dickson. The first book entirely devoted to group theory, W.
Burnside’s The theory of groups of finite order, was written in 1897.

Groups are one of the primary objects of interest in this book. In this
chapter we recall some basic definitions and results, omitting the easy proofs.

Definition 1.1.1 A group is a non-empty set G together with a binary
operation (denoted below by -) such that, for all a,b,c € G, the following
properties hold:

(i) (a-b)-c=a-(b-c),

(ii) There exists an element, that we shall denote by 1 € G, such that
a-1l=1-a=aqa,

1_ -1

(iii) There exists an element a™! € G, such that a - a~ al.a=1.

If, in addition, the following property is satisfied

a-b="b-a,

then the group is said to be abelian or commutative.
If the set G is finite, then the number of elements of G is called the
order of G and is denoted by |G)|.
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Groups form a very important category of mathematical objects, and
there are many examples that are certainly familiar to the reader. As an
illustration, we list a few.

Example 1.1.2

The set Z of rational integers; the set Q of rational numbers, the set R of real
numbers and the set C of complex numbers, with the ordinary operation
of addition, are examples of groups, all of which are also commutative.
Furthermore, if we denote by Q*, R* and C* the sets obtained from the
previous ones excluding the element 0, then these sets, with the ordinary
operation of multiplication are also examples of abelian groups. The set Z*
of integers without 0, is not a group under multiplication since no integer,
except 1 and —1, has a multiplicative inverse.

The set Z,, = {0,1,...,m — 1} of integers modulo m, with addition
defined by a + b = @ + b is an abelian group. Also, defining multiplication
by a-b=a-b it follows that ZZ, is a group under multiplication if and only
if the modulus m is a prime number (see Exercise 3).

Example 1.1.3

Let K be a field. The reader is probably already familiar with this concept:
if not, he can think of K in what follows as being either Q, R or C. Fields
will be introduced formally in Definition 2.1.2. Then, the set GL(n, K) of
all n x n invertible matrices with entries in K, with the usual multiplication
of matrices, is a group, which is not commutative if n > 1. It is called the
full linear group of n X n matrices over K.

Example 1.1.4 External direct product
Let G1,Ga,...,Gy be groups. We consider the set

G1>.<G2>'<--->2Gn={(a1,a2,...,an) : aiEGi,lSiSTL},
with multiplication defined componentwise:
(alaafl"")a'n) '(b17b2a"')bn) = (al 'bl’a2 'b2)"'aan'bn)-

This set, with the operation above, is a group. It is called the (external)
direct product of the groups G1, Gy, ..., G,. The direct product is abelian
if and only if each direct factor G;,1 < i < n, is abelian.

Our next example is of particular interest. Historically, this was the first
example of a group to be discovered and it was introduced because of its
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applications to the theory of equations. The development of research on this
particular class of groups eventually led to the formulation of the general
concept.

Example 1.1.5 The symmetric group

Let M be a finite set. We recall that a bijective map of M onto itself
is called a permutation of M. Clearly, the identical mapping is a permu-
tation and both the composition of two permutations and the inverse of a
permutation are permutations. Hence, it follows easily that the set of all
permutations of a given set M is a group with respect to composition of
mappings. It is usually denoted by Sps and called the symmetric group
on M.

If M ={1,2,...,n} then Sy is called the symmetric group of degree n
and is denoted by S,. Given an element ¥ € Sp, if we set
ix = ¢¥(k),1 < k < n, we can represent ¥ in the form:

1 2 3 - n
¢_<i1 iy i3 z'n)’

a notation introduced by A. Cauchy in 1845 [21, vol. 1, pp. 64 - 90]. Using
this notation, we can represent the inverse of ¢ as

(i1 dg A3 e dn
(P rh R

Given, for instance,

12345 12345
¢_<35241)and¢_<21453)’

we have that ¢ o ¢(1) = ¢(2) = 5. Computing the images of the other
numbers in a similar way, we obtain that

1 2 3 45
¢°¢_<5 3 4 1 2)'
In the same manner we get

128345
¢°¢:<43152>'

This simple computation shows that, in general, symmetric groups are
not commutative. Actually, the reader can check that S, is commutative if
and only if n < 2.
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Given a permutation ¥ € Sy, and a positive integer k, 1 < k < n, we say
that ¥ moves k if ¥(k) # k and, in the opposite case, we say that ¢ fizes k.

An element ¢ € Sy, is called a cycle of length k if there exist k distinct
positive integers ay, as, ..., ak, in M = {1,2,...,n} such that

¢(a1) = az, ¢(a2) =ag, ... )¢(ak—1) = Ok, w(ak) = ai,
and 1 (a) = a for any other element a € M.

To simplify notations, a cycle as above is denoted as ¥ = (a1, az, . . -, ak).
For example, if we talk of the the cycle a = (2,3, 5,7) of Sg we actually mean

the permutation:
(12 3 45678
““\13547628)

As a convention, we shall consider the identity mapping to be a cycle of
length 1. Cycles of length 2 have a special name, they are called transpo-
sitions. Two cycles a = (a1,as,...,ax) and 8 = (b1, by,...,bs) are called
disjoint if the sets {a1,az, ...,ax} and {b1,b2,...,bs} are disjoint.

We claim that the order of the symmetric group of degree n is n!. In
fact, an element of S, is determined by specifying the images of each of the
elements 1,2,...,n in M. To count the number of elements in S, it will
suffice to count the numbers of possible choices for the images.

Since the image of 1 can be any of the elements in M, we have exactly n
possible choices for it. Once the image of 1 has been chosen, for the image
of 2 we can choose any of the remaining elements of M, so we have n — 1
choices. In the same way, we shall have n—2 possible images for 3 and so on.
It follows that there are n(n—1)(n—2)---2-1 = n! different permutations
of M.

Definition 1.1.6 A nonempty subset H of a group G is called a subgroup
of G if it is closed under the operation of G (i.e., for every pair of elements
a,b € H, we have that ab € H) and H, with the restriction of the operation
of G, is itself a group.

There are several familiar examples of subgroups; for instance, Q* is a
subgroup of R* which, in turn, is a subgroup of C*. For any multiplicative
group G the subsets {1} and G are subgroups of G called the ¢rivial sub-
groups of G.
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Example 1.1.7 Cyclic subgroups

Let a be an element of a group G. For an integral exponent, we define
the powers of a by:

a-a---q ifn>0
N——
n times
a = g‘l-a" ---a_IJ ifn<0
|n| times
1 fn=20.
Since a™ - a™ = a™*", it follows immediately that the set

(a) = {a" : neZ}

is a subgroup of GG, which is called the cyclic subgroup of G generated
by a.

If this group is finite, then there exist distinct integers n,m such that
a™ = a™. Hence ™™™ = o™~ ™ = 1. The least positive integer n such that
a™ = 1 is called the order of a and is denoted o(a). If (a) is infinite, then
we say that a is an element of infinite order.

If there exists an element a in G such that G = (a), then we say that G
is a cyclic group and that a is a generator of G. Notice that o(a) = |(a)|.

Example 1.1.8 Subgroups generated by a subset

Let X be a nonempty subset of a group G. We define the subgroup
generated by X as the intersection of all the subgroups of G containing
X. Notice that this family of subgroups is nonempty, since at least G itself
belongs to it and that the intersection of this family is, in fact, a subgroup
(see Ezercisel3). This subgroup will be denoted by (X).

We leave, as an exercise, the task of proving that

(X) = {2 - a}f  m e X, &5 =21, k>1}U{1}.

If (X) = G, then we say that X is a set of generators of G. If X is
finite, then we say that G is a finitely generated group.

To give more examples, we introduce some new groups.

Definition 1.1.9 Given a field K, we define:



