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Preface

The purpose of the 8" Conference on Software Engineering Research, Manage-
ment and Applications (SERA 2010) held on May 24 — 26, 2010 in Montreal,
Canada was to bring together researchers and scientists, businessmen and entre-
preneurs, teachers and students to discuss the numerous fields of computer sci-
ence, and to share ideas and information in a meaningful way. Our conference
officers selected the best 16 papers from those papers accepted for presentation at
the conference in order to publish them in this volume. The papers were chosen
based on review scores submitted by members of the program committee, and
underwent further rounds of rigorous review.

In Chapter 1, Emil Vassev and Serguei Mokhov discuss their work in creating a
Distributed Modular Audio Recognition Framework capable of self-healing using
the Autonomic System Specification Language.

In Chapter 2, Yuhong Yan et al. present a new model of the Web Service Compo-
sition Problem and propose a reparative method based on planning graphs.

In Chapter 3, Chandan Sarkar et al. explore options for conducting remote usabil-
ity tests using their newly-developed Total Cost of Administration (TCA) tool to
collect and analyze test results.

In Chapter 4, Idir Ait-Sadoune and Yamine Ait-Ameur focus on the formal de-
scription, modeling, and validation of web services compositions and suggest a
refinement based method that encodes the Business Process Execution Language
(BPEL) model’s decompositions.

In Chapter 5, Emil Vassev describes his work on code generation of autonomous
systems using the Autonomic System Specification Language (ASSL) including
an overview of ASSL and features of autonomously generated code.

In Chapter 6, Mohamed Miladi et al. propose a UML extension as a model based
solution for the continuous increase in systems complexity and the necessity of
cooperation between applications.

In Chapter 7, Haeng-Kon Kim and Roger Lee improve the efficiency of the proxy
driving service with the addition of location-based service support.



VI Preface

In Chapter 8, Ahmad Hosseingholizadeh and Abdolreza Abhari propose a new
approach to risk analysis by combining various metrics in an attempt to take into
account all risky aspects of the software project.

In Chapter 9, Noorulain Khurshid et al. develop a categorical modeling language
as the first step toward the creation of a powerful modeling paradigm capable of
modeling emerging and evolving behavior of complex software.

In Chapter 10, Vieri Del Bianco et al. investigate the impact of economic factors
on the adoption of Open Source Software.

In Chapter 11, Samir Ouchani et al. propose a verification methodology of a com-
position of UML behavioral diagrams.

In Chapter 12, Haeng-Kon Kim and Sun Myung Hwang address mobile applica-
tion systems maintenance overhead with a knowledge discovery agent for an ef-
fective routing method using simple bit-map topology information.

In Chapter 13, D. Mouheb et al. present an aspect-oriented modeling approach for
specifying and integrating security concerns into UML design models.

In Chapter 14, Eric Famutimi et al. present several techniques for using Python as
a tool in computational analysis in one dimensional systems.

In Chapter 15, Fracisco Valdés Souto and Alain Abran describe an experiment
conducted to compare the performance of the Estimation of Projects in Contexts
of Uncertainty (EPCU) model against the Expert Judgement Estimation approach
using data from industry projects.

In Chapter 16, Hossein Mehrfard et al. discuss the drawbacks of Extreme
Programming (XP) when confronted with the stringent regulations for medical
software imposed by the Food and Drug Administration (FDA) and propose an
extension to XP to combat its weakness.

It is our sincere hope that this volume provides stimulation and inspiration, and
that it will be used as a foundation for works yet to come.

May 2010 Roger Lee
Olga Ormandjieva

Alain Abran

Constantinos Constantinides
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Towards Autonomic Specification of Distributed
MAREF with ASSL: Self-healing

Emil Vassev and Serguei A. Mokhov

Abstract. In this paper, we discuss our work towards self-healing property speci-
fication of an autonomic behavior in the Distributed Modular Audio Recognition
Framework (DMARF) by using the Autonomic System Specification Language
(ASSL). ASSL aids in enhancing DMARF with an autonomic middleware that en-
ables it to perform in autonomous systems that theoretically require less-to-none
human intervention. Here, we add an autonomic middleware layer to DMARF by
specifying the core four stages of the DMARF’s pattern-recognition pipeline as au-
tonomic elements managed by a distinct autonomic manager. We devise the algo-
rithms corresponding to this specification.

1 Introduction

The vision and metaphor of autonomic computing (AC) [7] is to apply the principles
of self-regulation and complexity hiding. The AC paradigm emphasizes on reduc-
ing the workload needed to maintain complex systems by transforming them into
self-managing autonomic systems. The idea is that software systems can manage
themselves, and deal with on-the-fly occurring requirements automatically. This is
the main reason why a great deal of research effort is devoted to the design and de-
velopment of robust AC tools. Such a tool is the ASSL (Autonomic System Specifi-
cation Language) framework, which helps AC researchers with problem formation,

Emil Vassev
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Dublin, Ireland
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2 E. Vassev and S.A. Mokhov

system design, system analysis and evaluation, and system implementation. In this
work, we use ASSL [16, 15] to integrate autonomic features into the Distributed
Modular Audio Recognition Framework (DMARF) — an intrinsically complex sys-
tem composed of multi-level operational layers.

Problem Statement and Proposed Solution

Distributed MARF — DMARF - could not be used in autonomous systems of any
kind “as-is” due to lack of provision for such a use by applications that necessitate
autonomic requirements. Extending DMARF directly to support the said require-
ments is a major design and development effort for an open-source project.

In this work, we provide a proof-of-concept ASSL specification of one of the
three core autonomic requirements for DMARF — self-healing (while the other two
—self-protection and self-optimization are done in the work). In Appendix is the cur-
rent outcome for the self-healing aspect and the rest of paper describes the method-
ology and related work behind it. Having the ASSL specification completed allows
compiling it into the wrapper Java code as well as management Java code to provide
an autonomic layer to DMAREF to fulfill the autonomic requirement.

The rest of this paper is organized as follows. In Section 2, we review related
work on AS specification and code generation. As a background to the remaining
sections, Section 3 provides a brief description of both DMARF and ASSL frame-
works. Section 4 presents the ASSL self-healing specification model for DMARF.
Finally, Section 5 presents some concluding remarks and future work.

2 Related Work

IBM Research has developed a framework called Policy Management for Auto-
nomic Computing (PMAC) [1], which provides a standard model for the definition
of policies and an environment for the development of software objects that hold and
evaluate policies. PMAC is used for the development and management of intelligent
autonomic software agents. With PMAC, these agents have the ability to dynami-
cally change their behavior, ability provided through a formal specification of poli-
cies encompassing the scope under which these policies are applicable. Moreover,
policy specification includes the conditions under which a policy is in conformity
(or has been violated), a set of resulting actions, goals or decisions that need to be
taken and the ability to determine the relative value (priority) of multiple applicable
actions, goals or decisions. [1]

3 Background

In this section, we introduce both the DMARF and the ASSL frameworks, thus
needed to understand the specification models presented in Section 4.



Towards Autonomic Specification of Distributed MARF with ASSL 3

Ciassificaton
Stage

lraining
- - set
« Chebyshey
Loading Preprocassing Feature Mahalanobis
Stage Stage Extraction Stage R R
trap | Markov
Mol | Neurat Netwark
S Low-Pass oSy
MP3Loader | . )
e e L FFT { Stochastic write
igh-
sample SINELoader =
LPC ZiphLaw
1 Band-Pass
. MP3Loader |
BB, Min/Max tlaspify Random
s, T 3 Band-Stop e
SNDLoader | . T )
4 ! normalze Cepstral
Fid x e o I High-Boost i 18 \
11 MiDILoader | \ g s ¥
oy A bt sk STy Fo Chebyshey
= e " High-Pass-Boost | | |-
3 E o il Segmentation Eudidean
! AFFLoader | {
== . Random Minkowsk i
— - Dummy - 0. read
AIFFCLoader | . - . § resufl sat
Aggregator Diff
5 . o Raw .
TEXTLoader NNk A ) D ——
L—/ K / \ / Mahalanobis
Hamming
FFT
Markov
FFT
I Stochastic
Zipflaw

=

Fig. 1 MARF’s Pattern Recognition Pipeline

3.1 Distributed MARF

DMAREF [2, 5] is based on the classical MARF whose pipeline stages were made
into distributed nodes.

Classical MARF

The Modular Audio Recognition Framework (MARF) [3] is an open-source re-
search platform and a collection of pattern recognition, signal processing, and nat-
ural language processing (NLP) algorithms written in Java and put together into a
modular and extensible framework. MARF can run distributively over the network,
run stand-alone, or just act as a library in applications. The backbone of MARF con-
sists of pipeline stages that communicate with each other to get the data they need
in a chained manner. In general, MARF’s pipeline of algorithm implementations is
presented in Figure 1, where the implemented algorithms are in white boxes. The
pipeline consists of four basic stages: sample loading, preprocessing, feature ex-
traction, and training/classification. There are a number of applications that test
MARF’s functionality and serve as examples of how to use MARF’s modules.
One of the most prominent applications SpeakerIdentApp — Text-Independent
Speaker Identification (who, gender, accent, spoken language, etc.).
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Distributed Version

The classical MARF was extended [5, 4] to allow the stages of the pipeline to run
as distributed nodes as well as a front-end, as roughly shown in Figure 2. The basic
stages and the front-end perform communication over Java RMI [17], CORBA [8],
and XML-RPC WebServices [9].

Applications of DMARF

High-volume processing of recorded audio, textual, or imagery data are possible
pattern-recognition and biometric applications of DMARF. Most of the emphasis
in this work is in audio, such as conference recordings with purpose of attribution
of said material to identities of speakers. Similarly, processing a bulk of recorded
phone conversations in a police department for forensic analysis and subject iden-
tification and classification, where sequential runs of the MARF instances on the
same machine, especially a mobile equipment such as a laptop, PDA, cellphone,
etc. which are not high-performance, an investigator has an ability of uploading col-
lected voice samples to the servers constituting a DMARF-implementing network.

3.1.1 DMAREF Self-healing Requirements

DMARF’s capture as an autonomic system primarily covers the autonomic func-
tioning of the distributed pattern-recognition pipeline. We examine properties that
apply to DMARF and specify in detail the self-healing aspect of it.

If we look at the pipeline as a whole, we see that there should be at least one
instance of the every stage somewhere on the network. There are four main core
pipeline stages and application-specific stage that initiates pipeline processing. If
one of the core stages goes offline completely, the pipeline stalls, so to recover one
needs a replacement node, or recovery of the failed node, or to reroute the pipeline
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through a different node with the same service functionality the failed one used to
provide until the failed one recovers so a pipeline has to always self-heal and provide
at least one pipeline route to be usable.

e A DMARF-based system should be able to recover itself in the form of replica-
tion to keep at least one route of the pipeline available. There are two types of
replication — the replication of a service, which essentially means we increase
the number of nodes per core stage (e.g. two different hosts provide preprocess-
ing services as in active replication, so if one goes down, the pipeline is still not
stalled; if both are up they can contribute to load balancing which is a part of the
self-optimization aspect) and replication within the node itself. The latter repli-
cas do not participate in the computation. They only receive updates and are on
stand-by if the primary service goes down.

e If all nodes of a core stages go down, the stage preceding it is responsible to
start up a temporary one on the host of the preceding stage, set it up to repair the
pipeline. This is the hard replication needed to withstand stall faults, where it is
more vulnerable and not fault-tolerant.

¢ In the second case, denoting passive replication of the same node (or even dif-
ferent nodes) losing a primary or a replica is not as serious as in the first case
because such a loss does not produce a pipeline stall and it is easier to self-heal
after a passive replica loss.

e Restart and recovery of the actual failed node without replicas is another possi-
bility for self-healing for DMARE. Technically, it may be tried prior or after the
replica kicks in.

3.2 ASSL

The Autonomic System Specification Language (ASSL) [15, 16] approaches the
problem of formal specification and code generation of ASs within a framework.
The core of this framework is a special formal notation and a toolset including tools
that allow ASSL specifications be edited and validated. The current validation ap-
proach in ASSL is a form of consistency checking (handles syntax and consistency
errors) performed against a set of semantic definitions. The latter form a theory
that aids in the construction of correct AS specifications. Moreover, from any valid
specification, ASSL can generate an operational Java application skeleton.

In general, ASSL considers autonomic system (ASs) as composed of autonomic
elements (AEs) interacting over interaction protocols. To specify those, ASSL is
defined through formalization tiers. Over these tiers, ASSL provides a multi-tier
specification model that is designed to be scalable and exposes a judicious selection
and configuration of infrastructure elements and mechanisms needed by an AS. The
ASSL tiers and their sub-tiers (cf. Figure 3) are abstractions of different aspects of
the AS under consideration. They aid not only to specifying the system at different
levels of abstraction, but also to reducing the complexity, and thus, to improving the
overall perception of the system.



