Studies in Computational Intelligence 296

Roger Lee (Ed.)

Guest Editors: Olga Ormandjieva * Alain Abran
Constantinos Constantinides

Software Engineering
Research, Management
and Applications 2010

@_ Springer

Roger Lee (Ed.)

Software Engineering Research,

Management and Applications
2010

Guest Editors

Olga Ormandjieva
Alain Abran . ==

. .. 1Y) T I S bt
Constantinos Constantinides - VRS 1ol U l]‘ 4 Ve
bl T T
/N ed e

) .

@ Springer

Prof. Roger Lee

Software Engineering &
Information Technology Institute
Computer Science Department
Central Michigan University

Mt. Pleasant, MI 48859, U.S.A.
E-mail: leelry@cmich.edu

ISBN 978-3-642-13272-8 e-ISBN 978-3-642-13273-5
DOI 10.1007/978-3-642-13273-5

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2010927079

(© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting. reproduction on microfilm or in any other
way. and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Printed on acid-free paper
9087654321

springer.com

Roger Lee (Ed.)

Software Engineering Research, Management and Applications 2010

Studies in Computational Intelligence, Volume 296

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 275. Dilip Kumar Pratihar and Lakhmi C. Jain (Eds.)
Intelligent Autonomous Systems, 2010
ISBN 978-3-642-11675-9

Vol. 276. Jacek Mandziuk

Knowledge-Free and Learning-Based Methods in Intelligent
Game Playing, 2010

ISBN 978-3-642-11677-3

Vol. 277. Filippo Spagnolo and Benedetto Di Paola (Eds.)
European and Chinese Cognitive Styles and their Impact on
Teaching Mathematics, 2010

ISBN 978-3-642-11679-7

Vol. 278. Radomir S. Stankovic and Jaakko Astola
From Boolean Logic to Switching Circuits and Automata, 2010
ISBN 978-3-642-11681-0

Vol. 279. Manolis Wallace, Ioannis E. Anagnostopoulos,
Phivos Mylonas, and Maria Bielikova (Eds.)

Semantics in Adaptive and Personalized Services, 2010
ISBN 978-3-642-11683-4

Vol. 280. Chang Wen Chen, Zhu Li, and Shiguo Lian (Eds.)
Intelligent Multimedia Communication: Techniques and
Applications, 2010

ISBN 978-3-642-11685-8

Vol. 281. Robert Babuska and Frans C.A. Groen (Eds.)
Interactive Collaborative Information Systems, 2010
ISBN 978-3-642-11687-2

Vol. 282. Husrev Taha Sencar, Sergio Velastin,
Nikolaos Nikolaidis, and Shiguo Lian (Eds.)
Intelligent Multimedia Analysis for Security
Applications, 2010

ISBN 978-3-642-11754-1

Vol. 283. Ngoc Thanh Nguyen, Radoslaw Katarzyniak, and
Shyi-Ming Chen (Eds.)

Advances in Intelligent Information and Database Systems,
2010

ISBN 978-3-642-12089-3

Vol. 284. Juan R. Gonzélez, David Alejandro Pelta,

Carlos Cruz, Germén Terrazas, and Natalio Krasnogor (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), 2010

ISBN 978-3-642-12537-9

Vol. 285. Roberto Cipolla, Sebastiano Battiato, and
Giovanni Maria Farinella (Eds.)

Computer Vision, 2010

ISBN 978-3-642-12847-9

Vol. 286. Zeev Volkovich, Alexander Bolshoy, Valery Kirzhner,
and Zeev Barzily

Genome Clustering, 2010

ISBN 978-3-642-12951-3

Vol. 287. Dan Schonfeld, Caifeng Shan, Dacheng Tao, and
Liang Wang (Eds.)

Video Search and Mining, 2010

ISBN 978-3-642-12899-8

Vol. 288. I-Hsien Ting, Hui-Ju Wu, Tien-Hwa Ho (Eds.)
Mining and Analyzing Social Networks, 2010
ISBN “Pending"

Vol. 289. Anne Hikansson, Ronald Hartung, and
Ngoc Thanh Nguyen (Eds.)

Agent and Multi-agent Technology for Internet and
Enterprise Systems, 2010

ISBN “Pending"

Vol. 290. Weiliang Xu and John Bronlund
Mastication Robots, 2010
ISBN “Pending"

Vol. 291. Shimon Whiteson
Adaptive Representations for Reinforcement Learning, 2010
ISBN “Pending"

Vol. 292. Fabrice Guillet, Gilbert Ritschard,

Henri Briand, Djamel A. Zighed (Eds.)

Advances in Knowledge Discovery and Management, 2010
ISBN “Pending"

Vol. 293. Anthony Brabazon, Michael O’Neill, and
Dietmar Maringer (Eds.)

Natural Computing in Computational Finance, 2010
ISBN “Pending"

Vol. 294, Manuel EM. Barros, Jorge M.C. Guilherme, and
Nuno C.G. Horta

Analog Circuits and Systems Optimization based on
Evolutionary Computation Techniques, 2010

ISBN 978-3-642-12345-0

Vol. 295. Roger Lee (Ed.)

Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing 2010

ISBN 978-3-642-13264-3

Vol. 296. Roger Lee (Ed.)

Software Engineering Research, Management and
Applications 2010

ISBN 978-3-642-13272-8

Preface

The purpose of the 8" Conference on Software Engineering Research, Manage-
ment and Applications (SERA 2010) held on May 24 — 26, 2010 in Montreal,
Canada was to bring together researchers and scientists, businessmen and entre-
preneurs, teachers and students to discuss the numerous fields of computer sci-
ence, and to share ideas and information in a meaningful way. Our conference
officers selected the best 16 papers from those papers accepted for presentation at
the conference in order to publish them in this volume. The papers were chosen
based on review scores submitted by members of the program committee, and
underwent further rounds of rigorous review.

In Chapter 1, Emil Vassev and Serguei Mokhov discuss their work in creating a
Distributed Modular Audio Recognition Framework capable of self-healing using
the Autonomic System Specification Language.

In Chapter 2, Yuhong Yan et al. present a new model of the Web Service Compo-
sition Problem and propose a reparative method based on planning graphs.

In Chapter 3, Chandan Sarkar et al. explore options for conducting remote usabil-
ity tests using their newly-developed Total Cost of Administration (TCA) tool to
collect and analyze test results.

In Chapter 4, Idir Ait-Sadoune and Yamine Ait-Ameur focus on the formal de-
scription, modeling, and validation of web services compositions and suggest a
refinement based method that encodes the Business Process Execution Language
(BPEL) model’s decompositions.

In Chapter 5, Emil Vassev describes his work on code generation of autonomous
systems using the Autonomic System Specification Language (ASSL) including
an overview of ASSL and features of autonomously generated code.

In Chapter 6, Mohamed Miladi et al. propose a UML extension as a model based
solution for the continuous increase in systems complexity and the necessity of
cooperation between applications.

In Chapter 7, Haeng-Kon Kim and Roger Lee improve the efficiency of the proxy
driving service with the addition of location-based service support.

VI Preface

In Chapter 8, Ahmad Hosseingholizadeh and Abdolreza Abhari propose a new
approach to risk analysis by combining various metrics in an attempt to take into
account all risky aspects of the software project.

In Chapter 9, Noorulain Khurshid et al. develop a categorical modeling language
as the first step toward the creation of a powerful modeling paradigm capable of
modeling emerging and evolving behavior of complex software.

In Chapter 10, Vieri Del Bianco et al. investigate the impact of economic factors
on the adoption of Open Source Software.

In Chapter 11, Samir Ouchani et al. propose a verification methodology of a com-
position of UML behavioral diagrams.

In Chapter 12, Haeng-Kon Kim and Sun Myung Hwang address mobile applica-
tion systems maintenance overhead with a knowledge discovery agent for an ef-
fective routing method using simple bit-map topology information.

In Chapter 13, D. Mouheb et al. present an aspect-oriented modeling approach for
specifying and integrating security concerns into UML design models.

In Chapter 14, Eric Famutimi et al. present several techniques for using Python as
a tool in computational analysis in one dimensional systems.

In Chapter 15, Fracisco Valdés Souto and Alain Abran describe an experiment
conducted to compare the performance of the Estimation of Projects in Contexts
of Uncertainty (EPCU) model against the Expert Judgement Estimation approach
using data from industry projects.

In Chapter 16, Hossein Mehrfard et al. discuss the drawbacks of Extreme
Programming (XP) when confronted with the stringent regulations for medical
software imposed by the Food and Drug Administration (FDA) and propose an
extension to XP to combat its weakness.

It is our sincere hope that this volume provides stimulation and inspiration, and
that it will be used as a foundation for works yet to come.

May 2010 Roger Lee
Olga Ormandjieva

Alain Abran

Constantinos Constantinides

Contents

Towards Autonomic Specification of Distributed MARF
with ASSL: Self-healing........... 1
Emil Vassev, Serquei A. Mokhov

Repairing Service Compositions in a Changing World 17
Yuhong Yan, Pascal Poizat, Ludeng Zhao

Remote Automated User Testing: First Steps toward a
General-Purpose Tool0t . 37
Chandan Sarkar, Candace Soderston, Dmitri Klementiev, Eddy Bell

Stepwise Design of BPEL Web Services Compositions: An
Event_B Refinement Based Approach........................ 51
Idir Ait-Sadoune, Yamine Ait-Ameur

Code Generation for Autonomic Systems with ASSL 69
Emil Vassev

A UML Based Deployment and Management Modeling for
Cooperative and Distributed Applications 87
Mohamed Nadhmi Miladi, Fatma Krichen, Mohamed Jmaiel,

Khalil Drira

Development of Mobile Location-Based Systems with
COMPODENE ¢ cuvsisvasmssemmensswsmiseessnessssssmnedsdwsmesogs 103
Haeng-Kon Kim, Roger Y. Lee

A New Compound Metric for Software Risk Assessment..... 115
Ahmad Hosseingholizadeh, Abdolreza Abhari

Towards a Tool Support for Specifying Complex Software
Systems by Categorical Modeling Language 133
Noorulain Khurshid, Olga Ormandjieva, Stan Klasa

VIII Contents

A Survey on the Importance of Some Economic Factors in

the Adoption of Open Source Software 151
Vieri Del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi,

Davide Tosi

Verification of the Correctness in Composed UML

Behavioural Diagrams 163
Samir Ouchani, Otmane Ait Mohamed, Mourad Debbabsi,

Makan Pourzandi

Development of Mobile Agent on CBD 179
Haeng-Kon Kim, Sun Myung Hwang

Aspect-Oriented Modeling for Representing and

Integrating Security Concerns in UML 197
D. Mouheb, C. Talhi, M. Nouh, V. Lima, M. Debbabi, L. Wang,

M. Pourzandi

Study of One Dimensional Molecular Properties Using
Python e 215
Eric.O. Famutimi, Michael Stinson, Roger Lee

Comparing the Estimation Performance of the EPCU

Model with the Expert Judgment Estimation Approach

Using Data from Industry 227
Francisco Valdés, Alain Abran

Investigating the Capability of Agile Processes to Support
Life-Science Regulations: The Case of XP and FDA

Regulations with a Focus on Human Factor Requirements ... 241
Hossein Mehrfard, Heidar Pirzadeh, Abdelwahab Hamou-Lhadj

Athor INAeX cu: s iviviasivisiiasssimsnmsvioaivssnimsiisasim 257

List of Contributors

Abdolreza Abhari
Ryerson University, ON, Canada
aabhari@ryerson.ca

;}lain Abran
Ecole de Technologie Supérieure
alain.abran@etsmtl.ca

Yamine Ait-Ameur

Laboratory of Applied Computer
Science (LISI-ENSMA), France
yamine@ensma. fr

Othmane Ait Mohamed
Concordia University, QC, Canada
ait@ece.concordia.ca

Idir Ait-Sadoune

Laboratory of Applied Computer
Science (LISI-ENSMA), France
idir.aitsadoune@ensma. fr

Eddy Bell
i-PEI LLC, WA, United States
eddy@i-pei.com

Vieri Del Bianco
University College Dublin, Ireland
viere.delbianco@ucd.ie

Mourad Debbabi
Concoria University, QC, Canada
debbabi@ece.concordia.ca

Khalil Drira
Université de Toulouse, France
khalil@laas. fr

Eric Famutimi

Central Michigan University, MI,
United States
famutleo@cmich.edu

Abdelwahab Hamou-Lhadj
Concordia University, QC, Canada
abdelw@ece.concordia.ca

Ahmad Hosseingholizadeh
Ryerson University, ON, Canada
ahossein@ryerson.ca

Sun Myung Hwang
Daejeon University, Korea
sunhwang@dju.ac.kr

Mohamed Jmaiel

University of Sfax, Tunisia

Mohamed. jmaiel@
enis.rnu.tn

Noorulain Khurshid

Concordia University, QC, Canada

N_khursh@
encs.concordia.ca

Haeng-Kon Kim
Catholic University of Daegu, Korea
hangkon@cu.ac.kr

Stan Klasa

Concordia University, QC,

Canada

Klasa@
encs.concordia.ca

X

Dmitri Klementiev
1-PEI LLC, WA, United States
dklem@microsoft.com

Fatma Krichen
University of Sfax, Tunisia
Fatma.krichen@irit. fr

Luigi Lavazza

Universita degli Studi dell’

Insubria, Italy

luigi.lavazza@
uninsubria.it

Roger Lee

Central Michigan University, MI,
United States
leelry@cmich.edu

V. Lima
Concordia University, QC, Canada
v_nune@ciise.concordia.ca

Hossein Mehrfard
Concordia University, QC, Canada
H_mehrfa@ece.concordia.ca

Mohamed Nadhmi Miladi

University of Sfax, Tunisia

Mohammednadhmi .miladi@
isimsf.rnu.tn

Serguei Mokhov

Concordia University, QC, Canada

mokhov@
cse.concordia.ca

Sandro Morasca

Universita degli Studi dell’Insubria,

Italy
sandro.morasca@uninsubria.it

D. Mouheb
Concordia University, QC, Canada
d_mouheb@ciise.concordia.ca

List of Contributors

M. Nouh
Concordia University, QC, Canada
m_nouh@ciise.concordia.ca

Olga Ormandjieva

Concordia University, QC, Canada

ormandj@
encs.concordia.ca

Samir Ouchani
Concordia University, QC, Canada
s_oucha@ece.concordia.ca

Heidar Pirzadeh

Concordia University, QC, Canada

s_pirzad@
ece.concordia.ca

Pascal Poizat

University of Evry Val d’Essonne,
France

cal .poizat@lri.fr

Makan Pourzandi

Ericsson Canada Inc., QC,
Canada
pourzandi@ericsson.com

Chandan Sarkar

Michigan State University, MI,
United States
sarkarch@msu.edu

Michael Stinson

Central Michigan University, M,
United States
stinslm@cmich.edu

Candace Soderston

Microsoft Corporation, WA,
United States
csoders@microsoft.com

Francisco Valdés Souto

Ecole de Technologie Supérieure

francisco.valdes@
spingere.com.mx

List of Contributors

Davide Taibi
Universita degli Studi dell’Insubria, Italy
Davide.taibi@uninsubria.it

C. Talhi
Concordia University, QC, Canada
talhi@ciise.concordia.ca

Davide Tosi
Universita degli Studi dell’Insubria, Italy
davide.tosi@uninsubria.it

Emil Vassev
University College Dublin, Ireland
emil-vassev@lero.ie

L. Wang

Concordia University, QC,
Canada
wang@ciise.concordia.ca

Yuhong Yan

Concordia University, QC,
Canada
yuhong@cse.concordia.ca

Ludeng Zhao

Concordia University, QC,

Canada

ludeng.zhao@
encs.concordia.ca

XI

Towards Autonomic Specification of Distributed
MAREF with ASSL: Self-healing

Emil Vassev and Serguei A. Mokhov

Abstract. In this paper, we discuss our work towards self-healing property speci-
fication of an autonomic behavior in the Distributed Modular Audio Recognition
Framework (DMARF) by using the Autonomic System Specification Language
(ASSL). ASSL aids in enhancing DMARF with an autonomic middleware that en-
ables it to perform in autonomous systems that theoretically require less-to-none
human intervention. Here, we add an autonomic middleware layer to DMARF by
specifying the core four stages of the DMARF’s pattern-recognition pipeline as au-
tonomic elements managed by a distinct autonomic manager. We devise the algo-
rithms corresponding to this specification.

1 Introduction

The vision and metaphor of autonomic computing (AC) [7] is to apply the principles
of self-regulation and complexity hiding. The AC paradigm emphasizes on reduc-
ing the workload needed to maintain complex systems by transforming them into
self-managing autonomic systems. The idea is that software systems can manage
themselves, and deal with on-the-fly occurring requirements automatically. This is
the main reason why a great deal of research effort is devoted to the design and de-
velopment of robust AC tools. Such a tool is the ASSL (Autonomic System Specifi-
cation Language) framework, which helps AC researchers with problem formation,

Emil Vassev

Lero-the Irish Software Engineering Research Centre, University College Dublin,
Dublin, Ireland

e-mail: emil.vassev@lero.ie

Serguei A. Mokhov

Department of Computer Science and Software Engineering, Concordia University,
Montreal. QC, Canada

e-mail: mokhov@cse.concordia.ca

Roger Lee (Ed.): SERA 2010, SCI 296, pp. 1-15, 2010.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010

2 E. Vassev and S.A. Mokhov

system design, system analysis and evaluation, and system implementation. In this
work, we use ASSL [16, 15] to integrate autonomic features into the Distributed
Modular Audio Recognition Framework (DMARF) — an intrinsically complex sys-
tem composed of multi-level operational layers.

Problem Statement and Proposed Solution

Distributed MARF — DMARF - could not be used in autonomous systems of any
kind “as-is” due to lack of provision for such a use by applications that necessitate
autonomic requirements. Extending DMARF directly to support the said require-
ments is a major design and development effort for an open-source project.

In this work, we provide a proof-of-concept ASSL specification of one of the
three core autonomic requirements for DMARF — self-healing (while the other two
—self-protection and self-optimization are done in the work). In Appendix is the cur-
rent outcome for the self-healing aspect and the rest of paper describes the method-
ology and related work behind it. Having the ASSL specification completed allows
compiling it into the wrapper Java code as well as management Java code to provide
an autonomic layer to DMAREF to fulfill the autonomic requirement.

The rest of this paper is organized as follows. In Section 2, we review related
work on AS specification and code generation. As a background to the remaining
sections, Section 3 provides a brief description of both DMARF and ASSL frame-
works. Section 4 presents the ASSL self-healing specification model for DMARF.
Finally, Section 5 presents some concluding remarks and future work.

2 Related Work

IBM Research has developed a framework called Policy Management for Auto-
nomic Computing (PMAC) [1], which provides a standard model for the definition
of policies and an environment for the development of software objects that hold and
evaluate policies. PMAC is used for the development and management of intelligent
autonomic software agents. With PMAC, these agents have the ability to dynami-
cally change their behavior, ability provided through a formal specification of poli-
cies encompassing the scope under which these policies are applicable. Moreover,
policy specification includes the conditions under which a policy is in conformity
(or has been violated), a set of resulting actions, goals or decisions that need to be
taken and the ability to determine the relative value (priority) of multiple applicable
actions, goals or decisions. [1]

3 Background

In this section, we introduce both the DMARF and the ASSL frameworks, thus
needed to understand the specification models presented in Section 4.

Towards Autonomic Specification of Distributed MARF with ASSL 3

Ciassificaton
Stage

lraining
- - set
« Chebyshey
Loading Preprocassing Feature Mahalanobis
Stage Stage Extraction Stage R R
trap | Markov
Mol | Neurat Netwark
S Low-Pass oSy
MP3Loader | .)
e e L FFT { Stochastic write
igh-
sample SINELoader =
LPC ZiphLaw
1 Band-Pass
. MP3Loader |
BB, Min/Max tlaspify Random
s, T 3 Band-Stop e
SNDLoader | . T)
4 ! normalze Cepstral
Fid x e o I High-Boost i 18 \
11 MiDILoader | \ g s ¥
oy A bt sk STy Fo Chebyshey
= e " High-Pass-Boost | | |-
3 E o il Segmentation Eudidean
! AFFLoader | {
== . Random Minkowsk i
— - Dummy - 0. read
AIFFCLoader | . - . § resufl sat
Aggregator Diff
5 . o Raw .
TEXTLoader NNk A) D ——
L—/ K / \ / Mahalanobis
Hamming
FFT
Markov
FFT
I Stochastic
Zipflaw

=

Fig. 1 MARF’s Pattern Recognition Pipeline

3.1 Distributed MARF

DMAREF [2, 5] is based on the classical MARF whose pipeline stages were made
into distributed nodes.

Classical MARF

The Modular Audio Recognition Framework (MARF) [3] is an open-source re-
search platform and a collection of pattern recognition, signal processing, and nat-
ural language processing (NLP) algorithms written in Java and put together into a
modular and extensible framework. MARF can run distributively over the network,
run stand-alone, or just act as a library in applications. The backbone of MARF con-
sists of pipeline stages that communicate with each other to get the data they need
in a chained manner. In general, MARF’s pipeline of algorithm implementations is
presented in Figure 1, where the implemented algorithms are in white boxes. The
pipeline consists of four basic stages: sample loading, preprocessing, feature ex-
traction, and training/classification. There are a number of applications that test
MARF’s functionality and serve as examples of how to use MARF’s modules.
One of the most prominent applications SpeakerIdentApp — Text-Independent
Speaker Identification (who, gender, accent, spoken language, etc.).

4 E. Vassev and S.A. Mokhov

Distributed Version

The classical MARF was extended [5, 4] to allow the stages of the pipeline to run
as distributed nodes as well as a front-end, as roughly shown in Figure 2. The basic
stages and the front-end perform communication over Java RMI [17], CORBA [8],
and XML-RPC WebServices [9].

Applications of DMARF

High-volume processing of recorded audio, textual, or imagery data are possible
pattern-recognition and biometric applications of DMARF. Most of the emphasis
in this work is in audio, such as conference recordings with purpose of attribution
of said material to identities of speakers. Similarly, processing a bulk of recorded
phone conversations in a police department for forensic analysis and subject iden-
tification and classification, where sequential runs of the MARF instances on the
same machine, especially a mobile equipment such as a laptop, PDA, cellphone,
etc. which are not high-performance, an investigator has an ability of uploading col-
lected voice samples to the servers constituting a DMARF-implementing network.

3.1.1 DMAREF Self-healing Requirements

DMARF’s capture as an autonomic system primarily covers the autonomic func-
tioning of the distributed pattern-recognition pipeline. We examine properties that
apply to DMARF and specify in detail the self-healing aspect of it.

If we look at the pipeline as a whole, we see that there should be at least one
instance of the every stage somewhere on the network. There are four main core
pipeline stages and application-specific stage that initiates pipeline processing. If
one of the core stages goes offline completely, the pipeline stalls, so to recover one
needs a replacement node, or recovery of the failed node, or to reroute the pipeline

ront - ule: ICK - 8N &
Thin Speakert dent Persisterce Pecovery Lvness
Application Cliert FE servica Service Monitor
L]
Thider oy 5
Application Cliernt | EE
1] s —_—
gllz:i;’::'(hem ﬂ%‘m [l‘" % | aﬁ]
[} A — =
Amllga%q:lwed > h—!%g € I"" 5 R %— 1
TS| -
Apgll}g—l%‘.;!:hed Bl qu‘?é"m‘m <] £ 5 [~ BF‘E_%
| — —
Fig. 2 The Distributed o e e el e B Y g
MAREF Pipeline —

Towards Autonomic Specification of Distributed MARF with ASSL 5

through a different node with the same service functionality the failed one used to
provide until the failed one recovers so a pipeline has to always self-heal and provide
at least one pipeline route to be usable.

e A DMARF-based system should be able to recover itself in the form of replica-
tion to keep at least one route of the pipeline available. There are two types of
replication — the replication of a service, which essentially means we increase
the number of nodes per core stage (e.g. two different hosts provide preprocess-
ing services as in active replication, so if one goes down, the pipeline is still not
stalled; if both are up they can contribute to load balancing which is a part of the
self-optimization aspect) and replication within the node itself. The latter repli-
cas do not participate in the computation. They only receive updates and are on
stand-by if the primary service goes down.

e If all nodes of a core stages go down, the stage preceding it is responsible to
start up a temporary one on the host of the preceding stage, set it up to repair the
pipeline. This is the hard replication needed to withstand stall faults, where it is
more vulnerable and not fault-tolerant.

¢ In the second case, denoting passive replication of the same node (or even dif-
ferent nodes) losing a primary or a replica is not as serious as in the first case
because such a loss does not produce a pipeline stall and it is easier to self-heal
after a passive replica loss.

e Restart and recovery of the actual failed node without replicas is another possi-
bility for self-healing for DMARE. Technically, it may be tried prior or after the
replica kicks in.

3.2 ASSL

The Autonomic System Specification Language (ASSL) [15, 16] approaches the
problem of formal specification and code generation of ASs within a framework.
The core of this framework is a special formal notation and a toolset including tools
that allow ASSL specifications be edited and validated. The current validation ap-
proach in ASSL is a form of consistency checking (handles syntax and consistency
errors) performed against a set of semantic definitions. The latter form a theory
that aids in the construction of correct AS specifications. Moreover, from any valid
specification, ASSL can generate an operational Java application skeleton.

In general, ASSL considers autonomic system (ASs) as composed of autonomic
elements (AEs) interacting over interaction protocols. To specify those, ASSL is
defined through formalization tiers. Over these tiers, ASSL provides a multi-tier
specification model that is designed to be scalable and exposes a judicious selection
and configuration of infrastructure elements and mechanisms needed by an AS. The
ASSL tiers and their sub-tiers (cf. Figure 3) are abstractions of different aspects of
the AS under consideration. They aid not only to specifying the system at different
levels of abstraction, but also to reducing the complexity, and thus, to improving the
overall perception of the system.

