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To My Parents



Preface

There is Pleasure sure,
In being Mad, which none but Madmen know!
John Dryden’s ““The Spanish Friar”

Extremal graph theory, in its strictest sense, is a branch of graph theory
developed and loved by Hungarians. Its study, as a subject in its own right,
was initiated by Turdn in 1940, although a special case of his theorem and
several other extremal results had been proved many years earlier. The main
exponent has been Paul Erd6s who, through his many papers and lectures,
as well as uncountably many problems, has virtually created the subject.
(In retrospect, it seems inevitable that it was Erd6s who, when I was fourteen,
introduced me to graph theory.)

In extremal graph theory one is interested in the relations between the
various graph invariants, such as order, size, connectivity, minimum degree,
maximum degree, chromatic number and diameter, and also in the values of
these invariants which ensure that the graph has certain properties. Often,
given a property 2 and an invariant g for a class 2 of graphs, we wish to
determine the least value m for which every graph G in 3 with (G) > m
has property #. Those graphs G in # without the property # and with
#(G) = m are called the extremal graphs for the problem. For instance, every
graph of order n and size at least n contains a cycle, and the extremal graphs
are the trees of order n. At a slightly less frivolous level, a graph of order 2u
contains a triangle if the minimum degree is at least u + 1, and the only
extremal graph is K** the complete bipartite graph. The prime example of
an extremal problem is the following: given a graph F, determine ex(n; F),
the maximum number of edges in a graph of order n not containing F as a
subgraph.

Having said this, I hasten to emphasize that in this book extremal graph
theory is interpreted in a much broader sense, including in its scope various
structural resnlts and any relations among the invariants of a graph, especially
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those concerned with best possible inequalities. The chapter titles give a
broad outline of the content of the text and, although most of the material
appears here for the first time in a book, the topics covered in most standard
treatises on graph theory are also dealt with in depth. The most notable
omissions are algebraic graph theory, matroids and the problems of enumera-
tion and reconstruction. The relative importance of the topics covered
in the different chapters is not reflected in their Iengths; otherwise the results
concerning Hamiltonian cycles, colouring graphs on surfaces, and graphs
without certain subgraphs would take up most of the space. Inevitably, the
selection of material and its presentation have been greatly influenced by
my personal preferences.

The readers are expected to have some familiarity with graph theory,
though the book is self-contained. It has grown out of two Part III courses
given at the University of Cambridge (1970/71 and 1975/76) and is intended
for research students and professional mathematicians. It seemed desirable
to expand the lecture notes into a book, since even expert graph theorists
seem to be unaware of quite a few of the results which were proved years
ago. I hope the book will help a little to stem the present tide of duplications.
Although it is exciting to introduce new concepts and to find new problems,
there is also merit in the continuity and development of a theory. The main
aim of this book is to bring readers up to date with the results in a number
of areas and to entice at least a few of them to continue the work. There
is a false myth that extremal results are rapidly superseded. I hope that this
book will help to make the myth a reality.

I would like to emphasize that the proofs of the results are important;
though it is easy to flip through the book and pick out some results, in many
cases it is more advantageous to be familiar with the methods than to know
the results. The exercises at the end of each section vary a great deal in
importance and difficulty. They contain many results and a few, marked
with the sign ‘+°, are really too difficult to be called exercises. In many
cases hints are given to bring the problem within reach. Very easy problems
are marked with the sign ‘—’. Unresolved questions are called Problems.

The end of a proof or the absence of a proof is indicated by the symbol B;
the greatest integer less than or equal to x is denoted by |x] and — |—x]
is denoted by [x].

It is a great pleasure to acknowledge the generous help of Professors P.
Erdos, G. A. Dirac, R. K. Guy, R. Halin, N. Sauer and C. Thomassen. My
research students, Stephen Eldridge and Andrew Thomason, made many
helpful suggestions. In addition Keith Carne, Andrew Cornford, Michael
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Davies, Donald Duval, David Goto, lan Holyer, David Jackson, Terry
Lyons, Richard Mason, Richard Nowakowski, Jonathan Partington,
Richard Pinch, John Rickard, Geoff Thorpe and Antony Wassermann helped
me find some of the mistakes; for the many which undoubtedly remain 1
apologise. For six months while writing this book I enjoyed the hospitality
of mathematicians at the University of Calgary to whom I am very grateful.
I acknowledge with thanks the excellent typing of Mrs Joan Scutt and Miss
Karen McDermid.

I am especially grateful to my wife, without whose patience and under-
standing this book would never have been written. My research students in
analysis also had to put up with a lot during the later stages of producing the
book.

Finally, I would like to thank the editor of the series, Professor P. M. Cohn,
for his speed and efficiency in handling the manuscript and for his help with
the proofs, often beyond the call of duty.

Cambridge B.B.
January 1978



Basic Definitions

The brass band stirred themselves, took a deep breath and played
through the “International’ three times without a break.
I. A Ilf and E. P. Petrov; “The Twelve Chairs”.

Some of the concepts occurring in this book have a set theoretical or topo-
logical flavour. However, most of the structures we investigate are finite and
every problem we discuss is free of set theoretical and topological difficulties.
In view of this we try to avoid pretentious notations and keep the defini-
tions as pedestrian as possible. Sometimes we carry this to the extent of
abusing the notation slightly. It is unlikely that many of the readers are un-
familiar with the basic concepts of graph theory but to make sure that we
speak the same language we run through the definitions needed in the sequel.
In order to help the reader familiarize himself with the definitions we shall
mention a few results as well. These results are hardly more than simple
observations. For the convenience of the reader some of the definitions will be
repeated in the chapter they are most used.

Unless otherwise stated every set is finite. The number of elements of a
set X is denoted by | X|. If | Y| = r then we say that Y is an r-set. If furthermore
Y < X then Yis an r-subset of X. The set of r-subsets of a set X is denoted by
X® ie. X = {Y:Y < X,|X| = r}. A graph G is an ordered pair of disjoint
sets (V, E) such that E = V' and V s (. The set V is the set of vertices of G
and E is the set of edges. An edge {x, y} is said to join the vertex x to the vertex
y and is denoted by xy. We also say that x and y are adjacent vertices and the
vertex x is incident with the edge xy. Two distinct edges with a common
endvertex are adjacent. Two graphs are isomorphic if there exists a 1-1 corre-
spondence between their vertex sets that preserves adjacency. Usually we
do not distinguish between isomorphic graphs, unless we want to specify the
vertices and edges. This is reflected in the convention that if G and H are iso-
morphic graphs then we write G =~ H or simply G = H.

The vertex set of a graph G is denoted by V(G) and the edge set by E(G);
if there is no danger of ambiguity, these are abbreviated to V and E. Even
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xiv BASIC DEFINITIONS

more, if the letter G occurs without any explanation then it stands for an
arbitrary graph. Instead of x € V(G) we usually write x € G to denote that x
is a vertex of G. In the same spirit the number of vertices of G, called the order
of G, is denoted by |G|. A graph of order 1 is said to be trivial. The number
of edges of G, called the size of G, is denoted by e(G). We use the notation G"
to denote an arbitrary graph of order n. Similarly G(n, m) denotes an arbitrary
graph of order n and size m. The class of graphs of order n is G".

A graph G" = (V',E) is a subgraph of a graph G = (V,E) if V' < V and
E' < E. In this case we write G' < G. If V' = V then G’ is a factor of G. If
W < V then the graph (W, E n W%) is said to be the subgraph induced or
spanned by W, and is denoted by G[ W]. We say that H is an induced subgraph
of Gif H = G and H = G[V(H)].

The set of vertices adjacent to a vertex x € G is denoted by I'(x) and d(x)
=|T'(x)| said to be the degree of x. If it is not clear which is the underlying
graph, we put the symbol of the graph into the suffix of the appropriate
symbol. Thus, if H is an induced subgraph of G and x € H then

T(x) = T n V(E) = T(x)n V(H) and  dy(x) = [T4(x).

For W < V(G) we put I(W) = U{I(x): x e W}. The minimum degree of the
vertices of G is denoted by &) and the maximum degree is denoted by
A(G).If 8(G) = A(G) = k, i.e.every vertex of G has degree k, then G is said to be
reqular of degree k or k-regular. A 3-regular graph is said to be cubic.

If E' = E(G) then G — E' denotes the graph resulting from G if we omit
the edges belonging to E', ie. G — E' = (V(G), E(G) — E'). Similarly, if
W < V(G) then G — W is the graph obtained from G by the removal of the
vertices belonging to W. Of course, if a vertex x& W was to be omitted then
every edge incident with x was to be omitted as well, i.e. if G =(V, E) then
G—W=(V-WEnV—- W?).If W= {x} we usually write G — x instead
of G — {x}, analogously we may write G — xy instead of G — {xy}, xy € E.
If H = G then we may write G — H instead of G — V(H). If xye V® — E
then the graph obtained from G by addition of the edge xy is G + xy =
(V, E L {xy}). We might use similar notation for the addition of vertices.

If V(G) = {x, X,,...,X,} then (d(x))] is said to be a degree sequence of G.
Usually we order the vertices in such a way that the degree sequence is mono-
tone increasing or monotone decreasing. Clearly

Zn: d(x;) = 2¢(G)
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so if (d,)] is a degree sequence of a graph then

n

Yd =0 (mod2) (0.1

Let x and y be two nét necessarily different vertices of G. By an
x-y walk W we mean an alternating sequence of vertices and edges,
SAY Xy, 04, Xgu 0y ..o X 8y X,y y,  Such  that x, =x, x,,, =y and
o, = xx,,, €EG), |l <i<I| We usually put W = x,x,...x,,, since from
this form it is clear which are the edges in the sequence. The length of this
walk W is I. The vertex set of Wis V(W) = {x,:1 < i <[+ 1} and the edge
set of Wis E(W) = {a,:1 < i < l}. The walk above is a trail if all its edges
are distinct and it is a path-or x, — x,,, path if all its vertices are distinct.
A trail whose endvertices coincide is a circuit. If [ > 3, x, = x,,, but the
other vertices are distinct from each other and x, then we call the walk a cycle.

This cycle is usually denoted by x,x, ...x, (instead of x,x,...xx,). A
path Pandacycle Carcidentified with the graphs(V(P), E(P))and (V(C), E(C)).
In particular, x,x,...x,,, and x,,,x,...x, denote the same path, so an
x—y path is also a y—x path. Similarly x,x, ...x, and x,x, ...x,x, denote the
same cycle. An edge of the form x,x;(3 < j < | — 1)is a diagonal of this cycle.
We denote by P’ a path of length | and by C' a cycle of length I. We call C3 a
triangle, C* a quadrilateral, C* a pentagon, etc. A cycle is odd (even) if its length
is odd (even).

IfP=xx,...x,,, sapathyu =x,v=x;and 1 <i<j<I+ 1 then
the u — v segment of Pis the u — v path x,x,,, ... x;_,x. We denote it by
uPv. If P is an x—y path and Q is a y—z path then xPyQz is the x—z walk ob-
tained by stringing the two paths together. Similarly we may string together
segments of paths to obtain a walk or a path with the self-explanatory nota-
tion x, P, x,P,x;... Px,, ,, where x,;x; ., e V(P),i=1,2,...,1

If xe X and ye Y then an x—y path is also said to X-Y path. Similarly
aec E(G)isa X-Yedgeif o = xy and x e X, y € ¥. The number of X-Y edges
is denoted by (X, Y). If X = {x} we usually write e(x, Y).

A graph is connected if every pair of vertices are joined by a path. A maximal
connected subgraph is said to be a component of the graph. A connected graph
not containing cycles is a tree, and a graph without cycles (an acyclic graph)
is a forest. Clearly a forest is a graph whose every component is a tree. A
tree of order n has n—1 edges and a forest or order n with ¢ components has
n—c edges.

The distance between two vertices x and y, denoted by d(x, y) is the mini-
mum length of an x—y path. If there is no x—y path, i.e, x and y belong to differ-
ent components, then we put d(x, y) = oco. The diameter of a graph G is
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defined as
diam G = max{d(x, y): x,yeG}.

A related concept is the radius of G, rad G = m‘in max d(x, y). The girth of
G, g(G), is the minimum length of a cycle in G and tyhe circumference of G,
¢(G), is the maximum length of a cycle. If G does not contain a cycle then the
girth and circumference are usually not defined though one might put
9(G) = ¢(G) = 0.

It might be appropriate to remark here that, following recent custom, we
use the words “maximum” and “maximal” with different meanings. “Maxi-
mal” refers to a maximal element of an ordered set, in which, unless other-
wise stated, the ordering is given by inclusion. “Maximum” refers to an ele-
ment of maximal size. Thus P is a maximal path of a graph G if it is not
properly contained in any other path and Q is a maximum path of G if G
does not contain a path R longer than Q (i.e. ¢(R) < e(Q) for every path R in G).

A graph G is an r-partite graph with vertex classes V,, V,, ..., V. if V.= V(G)
is the disjoint union V|, V,,..., ¥ and every edge joins vertices belonging to
different vertex classes. Instead of 2-partite we say bipartite. We denote by
G(n,n,,...,n)an arbitrary r-partite graph whose ith class contains exactly
n; vertices.

A k-colouring or simply colouring c of a set X with colours ¢, ¢,,...,c, isa
function ¢: X — {¢,,...,¢,}. We usually consider what one might call a
proper colouring of the vertices or edges of a graph. This is a colouring in
which adjacent elements (i.e. vertices in the vertex colouring and edges in
the edge colouring) are assigned different colours. If G has a (proper) k-
colouring of the vertices then G is said to be k-colourable. The chromatic
number of G is y(G) = min{k: G is k-colourable}. If y(G) = r we say that G
is r-chromatic. Tt is easily seen that if G is a minimal r-chromatic graph then

85G) =r— L (0.2)

For if x e G, d(x) < r — 2, then a (proper) ( — 1)-colouring of G — x can be
extended to a (proper) (r — 1)-colouring of G. In particular,

if (G) = r then 6(H) = r — 1 for some H < G. (0.3)

Note that a (proper) r-colouring of the vertices of G is exactly a way of
considering G as an r-partite graph: the ith vertex class is the set of vertices
coloured with the ith colour. This is the reason why a vertex class is often
referred to as a colour class. In spite of the equivalence of the terms r-partite



BASIC DEFINITIONS xvii

and r-colourable we use both since when speaking about an r-partite graph
we usually fix the vertex classes but the colour classes of an r-colourable
graph are almost never supposed to be given a priori.

It is easily seen (e.g. [E16]) that every graph G contains a bipartite graph
B = G,(n,, n,) whose size is at least half the size of G:

e(B) > 2¢(G). (0.4)

For let B be a maximum bipartite subgraph of G. We may assume that B is
the bipartite subgraph of G spanned by the classes V, and V,, where V|, U V,=V.
If x € V, then x is joined to at least as many vertices in V' as in V] since other-
wise ¥, — {x} and ¥, U {x} could be chosen for the vertex classes, giving a
bipartite subgraph of larger size. Consequently dp(x) > 1d(x), implying (0.4).

The reader may find it amusing to prove that if e(G) > 0 then there is a
subgraph B = G,(n,,n,) = G such that n, +n, =n, |n, —n,| <1 and
¢(B) > 1e(G). In particular, we may require strict inequality in (0.4). It is
obvious that similar results can be proved for r-partite graphs. The weakest
of these states that e(G,(n,,...,n.)) = (1 — 1/r)e(G) for some G,(n,,...,n) = G.

In a number of cases we shall find it convenient to consider a class of graphs
defined as follows. Let d > 1 and put

d+ 1
2, = {G: |G| = d,e(G) = d|G| — ( 5 )+ 1]{.
Note that if G € 9, then (G| > d since |G| = d would imply

d d+ 1 d
(2) e(G)>d2—( 5 )+1=<2>+1.

Furthermore, if G € 2, then

\Y%

G containsasubgraph H with é(H)=d + 1. (0.5)

To see this note that if 6(G) < d, say d(x) < d, then G — x € @, since |G| > d.
By repeated application of this reduction we must arrive at a subgraph with
minimal degree at least d + 1 since otherwise we would arrive at a graph
G, 2,with |G,| = d.

There are a number of structures related to graphs. A hypergraph or set
system H is a set V together with a family £ of subsets of V. Naturally xe V
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is a vertex and SeX is an edge of the hypergraph H. If Z = V® then H is
said to be an r-graph or r-uniform hypergraph.

By definition a graph does not contain a loop, i.e. an edge joining a vertex
to itself, and two distinct vertices are joined by at most one edge, i.e. the graph
does not contain multiple edges. If we allow multiple edges then instead of a
graph we obtain a multigraph. The number of edges joining a vertex x to y
is the multiplicity of the edge xy. Sometimes a multigraph is allowed to have
loops (of course multiple loops) but it is more customary to call such an
object a pseudograph. If G = (V, E¥) is a multigraph, the underlying graph H
of G has vertex set V and two vertices are joined in H iff they are joined in G.
One might describe G as a graph H in which certain specified edges are multi-
ple edges.

A directed graph D is a set V = V(D) together with a collection E = E(D)
of ordered pairs of distinct elements of V. Of course, V'is the set of vertices and
E is the set of directed edges. A directed edge (x, y)eE is denoted by xy.
An oriented graph is a directed graph containing no symmetric pair of
directed edges, i.e. in which at most one of Xy and yx is an edge. In other words
an oriented graph G is obtained from a graph G by ordering each edge of G.
Then we say that G is obtained from G by giving G an orientation or simply
that G is an orientation of G. Finally we remark that the definition of an in-
finite graph is the obvious one: G = (V, E) is an infinite graph if V is an infinite
set, Ec V' and VN E = . In order to emphasize that an object in
question is a graph we might call it a simple graph. Most of the concepts
mentioned above can be carried over immediately to directed graphs. Note
however that an x, — x, path corresponds to a directed x, — X, path, ie.
to a path x,x, ... x, such that x,x, , , is directed from x; t0 x; ;. Accordingly
d(x, y) is the minimum length of a directed x — y path.

Let G = (V,E), G’ = (V.E') be graphs. A map ¢:V — V' is said to be a
homomorphism of G into G' if xy € E implies that ¢(x) ¢(y)e E. If ¢ is also
1—1 then it is an embedding of G into G': clearly ¢ gives an isomorphism
between G and a subgraph (denoted by ¢(G)) of G'.

Let G be a pseudograph, i.e. multigraph in which loops are permitted. We
say that a multigraph G’ is an elementary subdivision of G if there is an edge
of G joining x€ G to y€ G (x = y may hold) such that G’ is obtained from
G — xy by adding a new vertex and joining it to x and y. (Thus to obtain G’
we replace an edge by a path of length 2.) We say that H is a subdivision of G
or that H is a topological G, in notation H = TG, if H can be obtained from
G by a sequence of elementary subdivisions. Note that the notation TG is
analogous to G" and G(n, m), since it denotes an arbitrary subdivision of G.
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In fact throughout the book we use the notation TG only in the case when G
does not have a vertex of degree 2 joined to distinct vertices. Two multi-
graphs are said to be homeomorphic if they have isomorphic subdivisions.
It is trivial to see that two multigraphs are homeomorphic iff the topological
spaces naturally associated with them (cf. Ch V, §3) are homeomorphic.

Let H be a connected subgraph of a graph G. Add a new vertex x,, to the
graph G-H and join it to every vertex y € G—H for which G contains a y—-H
edge. The resulting graph is denoted by G/H and it is said to be the graph
obtained from G by contracting H (to a vertex). If E(H) = xy then G/xy = G/H
is an elementary contraction of G. We say that L is a contraction of G, in
notation G > L, if L can be obtained from G by a sequence of contractions
(of connected subgraphs). L is a subcontraction of G, in notation G > L if L
is a contraction of a subgraph of G.

The complement of a graph G = (V, E) is the graph G = (¥, V® — E).
The complete graph of order n, K", has every pair of its n vertices adjacent.
In other words K" is the graph of order n and size (3), that is K" = G(n, (5))-
Note that K® = C? is the triangle. We call K* a complete quadrilateral, etc.
We have chosen the notation K" instead of the more common K, since we
shall use capital letters with subscripts (G,, H,, K, etc.) to denote specific
graphs. Thus K, might denote a given complete subgraph. The complement
of K" is the empty or null graph of order n: E" = K" = G(n,0). The unique
maximal graph G,(n,n,,...,n,) is denoted by K (n,,n,,...,n). It has r
vertex classes, the ith class has n, vertices and every pair of vertices belong to
distinct classes are joined by an edge. Clearly

oK (ng,...,n)) = ) <'Zj<r nn,.
If r = 2 then the index r might be omitted and n, n, might become upper
indices, e.g. K,(3,4) = K(3,4) = K*>* The tree K7 is the star of order p + L.
The maximum order of a complete subgraph of G is the cligue number of
G. We denote it by cl(G).
The union of the graphs G, and G, is denoted by G, v G,. If

(V(G)) U E(G,)) n (V(G,) U EG,) = & (0.6)

then
V(G, U G,) = V(G,) U V(G,)

and
E(G,v G,) = E(G)) v E(G,).
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If (6) does not hold then we add an index to the elements of V(G u E(G)
to make (6) hold and define the union as before. Sometimes we emphasize
this by saying that G, U G, is the disjoint union of G, and G,;e.g. K* U K*
is the complement of K(3,4). The only exception occurs when G, and G,
are subgraphs of a given graph. Then, naturally, G, U G, is defined by

(G, uG,) = V(G,)uV(G,) and EG,uG,) = EG,) U E®G),).

It will be clear from the text which of these cases is at hand.
The union of several graphs is defined analogously. The disjoint union of
k copies of the same graph G is denoted by kG. Thus kK' = kE' = E*
The join G, + G, of G, and G, is obtained from G, U G, by joining
each vertex of G, to each vertex of G,. Thus E* + E* = K(3,4). The join of
several graphs is defined analogously:

E"+ E”+ ...+ E"=K(n,n,...,n)

In a number of graph constructions it is convenient to choose a prime for
one of the parameters. In order to extend the construction to every possible
value of the parameters one then uses a shallow or deep result about the
distribution of primes. Bertrand’s postulate claims that for every natural
number n > 3 there is a prime between n and 2n — 2. This was verified by
Bertrand for n < 3000000 and proved by Tchebychev in 1850 (cf. [HW1;
p. 373)). Furthermore, the quotient of consecutive primes tends to 1. In fact
there are 0 <7 < 1 and C, > 0 such that for every n > 2 there is a prime
between n and n+ Cpn" This was proved by Hoheisel [H27]
(n=1—23300""+¢), Ingham [I1] (n =3+ ¢), Montgomery [M32]
(n = 2+ ¢) and Huxley [H27] (n = {; + ¢) where & > 0 is arbitrary. We
shall make use of the fact that if n is sufficiently large then

2/3

there is a prime between n —-%n?*’? and n. 0.7)
10

If g is a prime power then there is a finite projective plane PG(2, g) over the
field of order g. We represent the points and lines of this plane by triples
(a, b, ¢) and [a, b, c] of elements of the ground field such that each triple has at
least one non-zero element. If 1 # 0 then (a, b, ¢) and (La, Ab, Ac) represent
the same point; similarly [a, b, ¢] and {4a, Ab, Ac] represent the same line.
A point (x, y, z) is on a line [a, b,c] f ax + by + ¢z = 0.
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