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. Preface i

PREFACE

Structural dynamics has been receiving ever increasing attention
in the paét few decades. This is mainly due to human needs, such as
adventure in outer space, o0il extraction in angry seas, tall buildings in
populated cities, long span bridges across wide channels, etc. This 1is
also due to the flexibility and accuracy of new analytical methods, such
as finite element method, and the power of new engineering tools, such as
digital computers. Indeed, if economically permissible, the engineering
profession, which 1is well equipped with the recognized analytical
methods, solution methods and computation tools, can design safe
structures in dynamic environments within any predetermined confidence
level. This book presents the latest developments in structural dynamics
with particular emphasis on the formulation of equations of motion by
finite element methods and the solutions of those equations using
micro-computers. The authors believe that it is the first book which
deals with freqﬁency—dependent shape functions for realistic finite
element modelling of dynamic problems and which points out that the
conventional shape functions are only approximations. As the computation
and application share equal importance, a complete listing of a natural
vibration finite element package is given. A feature of this book
in handling the forced vibration problem is to separate the solution into
two parts, steady state and transient in connection with the
complementary function, and enables an engineer to design each distinct
part independently. Some advanced topics such as substructure and
synthesis which are viewed in a modern unified manner are also included.

We are grateful to Associate Professor Fu Zizhi for his suggestion

that we should write a book for the Science Press. We are obliged to our
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graduate students for carrying out the computation of some of the worked
examples, and in particular to Mr. Chen Shuhui for checking the
manuscripts. Finally, we are indebted to our Departmental staff, Mrs.
Brenda Ng and Mrs. K. Cheung, for typing part of the manuscripts and

drawing the diagrams.

Y. K. Cheung
A. Y. T. Leung
Hong Kong

July 1990
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Section 1.1: Introduction 1
CHAPTER 1

FINITE ELEMENTS AND STRUCTURAL DYNAMICS

1.1. INTRODUCTION

Structural dynamics is the study of the relations between applied
forces and deformation and stress responses of structures as functions of
time. It is a rapidly expanding area of applications of the now
well-known finite element method in the fields of aeronautical, civil,
mechanical and offshore engineering. Because of the additional time
variable, many dynamic problems cannot be solved by analytical methods as
effectively as their counterparts in statics. It can be claimed that a
common numerical method such as the finite element method is a more
valuable tool in dynamics than in statics.

As this book is intended to be an introductory level text, only
linear problems are considered. The topics covered include free and
forced vibrations. In particular, the finite element method is used to
formulate the discretised equations of motion and then, various
computational methods are introduced to solve such equations. Attention
is also paid to the practical and large scale analysis of structures in
dynamic environment.

The distribution of the displacements in a structure can be

described by a displacement function,
{ulx,y,z,t)} = [ulx,y,2,t),v(x,y,2,t),wix,y,zt)]

Sometimes the spatial and time variables of the displacement function are
separable. It can then be expressed as the sum of products of time and

space parameters, i.e.

ulx,y,z,t) = q1(t)u1(x,y,z) + qz(t)uz(x’y’Z) + ...+ qn(t)un(x,y,z)
(1.1.1)

in which qi(t) are generalized coordinates to be determined and ui(x,y,z)
are displacement functions, which are usually prescribed or computed
beforehand by the finite element method.

Very often, the conditions of being separable in time and spatial
variables cannot be satisfied exactly. However,in engineering practice,

the conditions can always be satisfied approximately when a sufficiently
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large number of terms are taken in Eq.(1.1.1).
By discretising the space domain into finite elements, the complex
time-space problem can be reduced to a time-dependent problem alone at

some discrete points X Yo 2, (or nodes). Eq.(1.1.1) can then be

written as

u(t) = q1(t)u1 + qz(t)u2 + ...+ qn(t)un (1.1.2)

Where ui = ui(xk, yk, Zk) is a finite element nodal parameter.

The generalized coordinates q, are coupled in general, and cannot be
solved one by one. However, there is a class of displacement functions
which will uncouple the generalized coordinates such that q, can be
solved individually. These are the so-called eigenfunctions, or when
discretised, eigenvectors. They are also often known as natural modes.
Fortunately, the natural modes can be determined from the simplest
equation of motion of undamped harmonic vibration, in which the time
variable has been eliminated. Therefore the normal procedures of solving
a structural dynamic problem are as follows:

(1) formulate the equations of motion in time variable alone at
nodal points with assumed displacement functions;
(ii) solve for the natural modes;
(iii) uncouple the terms in the equations of motion by using the
natural modes; and
(1v) solve the uncoupled sets of equations of motion one by one for
the generalized coordinates q, and finally compute the
displacement response.
The above procedures are based on the modal analysis method.
However, there are other methods in which the coupled equations of motion
are integrated directly without reference to natural modes, and they are
called direct integration methods. In this text only the modal method
will be discussed extensively because it has wide applications in linear
structural mechanics.

In this chapter, a spring system with a single mass will be used as
an introduction to the vibration phenomena, and the method of modal
analysis will be 1illustrated by a multi-degree-of-freedom system.
Energy theorems and finite element procedure in dynamics will also be

included in the presentation.
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Fig. 1.2.2 Damped free responses with initial conditions
A, B, X are integration constants
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1.2. VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The number of degrees of freedom of a vibrating system corresponds
to the number of displacement parameters which are required to describe
the vibrating configuration of the system adequately. Each system in
Fig. 1.2.1 can be represented adequately by a single-degree-of-freedom
system. The essential features include:

(i) the mass m, producing inertia force - mi;

(ii) the stiffness k, producing restoring force - ku;

(iii) the damping mechanism with coefficient ¢, producing viscous
damping force - cl; and

(iv) the applied force f.

Strictly speaking, the damping force is not necessarily proportional
to the velocity. However, such a simplification serves the purpose of
illustrating the vibration phenomena adequately. In the state of dynamic
equilibrium,

mi + cu + ku = f(t) (1.2.1)
This equation is to be solved for u(t) satisfying the initial

conditions:

u (1.2.2)

u(0) = U u(0) "

Eq.(1.2.1) is often divided by m to give the following standard form
2

i+ 2Cwnh + wu = f(t)/m = F(t) (1.2.3)
where, by comparing term by term, { = c/2mwn, which is called damping
ratio (or damping factor) and w = vk/m, which is called natural

frequency. When { = 1, the system is critically damped. Therefore,
100% x £ 1is the percentage of critical damping. Damping can also be
defined by the logarithmic decrement &, which is the natural logarithm

of the ratio of any two successive amplitudes. The relation between

¢ and & is given by & = 25 / V(1 - &%) .

Eq. (1.2.3) subject to the initial conditions in Eq.(1.2.2) can be

solved by taking Laplace transforms [1,2] on the following terms

L{u(t)} = u(s)

L{u(t)} = su(s) - u(0)

L{i(t)} = s%uls) - su(0) - u(0)
L{F(t)} = F(s),

Eq. (1.2.3) becomes
[s%u(s) - su(0) - u(0)] + 2¢w [su(s) - u(0)] + w:ﬁ(s) = F(s)

or
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u(s) = [F(s) + (s + 2¢w Ju + u1/A
where u, = u(0), Uo = u(0),

2

and A =35+ ZCwns + wnz = (s + Cwn)2 *

d

in which wd is the damped natural frequency which is equal to an1 - C?

By virtue of inverse tranforms,

L {1/8} = exp(- Cw ) sin (0 t) /o

L_1{(s + Cwn)/A} = exp(- Cwnt) cos wdt

il L {F(s)/ay = L IiF() expl- ¢w_(t - ©)sin o (t - T)dr
d

The solution can be expressed as

t

u(t) = JF(T)h(t-T)dr + g(t)uo + h(t)ho (1.2.4)
0
_ oA - )
h(t) = wdexp( Cwnt)51nwdt
g(t) = exp(—Cwnt)coswdt + Cwnsinwdt

The first term is usually called the Duhamel’s integral or convolution
integral, while the terms g(t) and h(t) are called transients because of
the presence of exp(—Cwnt) which is a decaying function of time. It
should be noted that in Eq.(1.2.4) the condition for oscillatory solution
is £ < 1, (Fig.1.2.2c). The critically-damped cases, i.e. = 1, will
not be considered here (Figs. 1.2.2a and b).

The following are basic examples in vibration, and the readers are
strongly recommended to derive the solutions as an exercise.
(i) Undamped harmonic vibration:

Forcing function, f = fo sinv t

Damping coefficient, ¢ =0

The solution is given by

u = —= 3 sin vt = u sin vt
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[

Fig. 1.2.3 Response amplitude against forcing frequency
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where u = fO/k is the static response and G=u;ﬂf/(wnl13) is the
s

response amplitude. The response amplitude is plotted against forcing
frequency v in Fig. 1.2.3.

It should be noted that the amplitude u begins with u at v = 0 and
increases monotonically when 0 < v < wn. When v equals the natural
frequency w., u becomes infinitely large (if physically permissible) and
the system is said to be in resonance. Immediately after this, u changes
sign (i.e., u and fo are of opposite signs) and u is said to be 180° out
of phase with fo, as shown by the dotted curve. However, 1if only the
absolute value of the amplitude is of interest, u is plotted with solid
curve in the same quadrant.

(ii) Damped harmonic vibration:

Damping ratio  # O

Forcing function f(t) = fo sin vt
The solution is

u = u sin(vt - ¢) (1.2.5)

2 2

where the amplitude u = uswn/V(wnz— uz) + 4§2v2wn

the phase angle ¢ = tan_1[2§wnv/(wn2 - 9]

and the static response o = fo/k.

From the solution (Eq.(1.2.5)), it can be seen that for the steady
state vibration, the response u is lagging behind the forcing function by
an angle ¢ . ﬁ/uS and ¢ are plotted against the frequency ratio in Figs.
1.2.4a and 1.2.4b respectively.

The dotted curve in Fig. 1.2.4a connects all the points of maximum
amplitude. It can be obtained by making dﬁmﬂ/du = 0, which yields

v = an1 = 2§2. Usually when £ is small, maximum amplitude occurs when
the excitation frequency is equal to the natural frequency of the systenm,
vo= o, i.e., at resonance. Therefore, the natural frequency is an
important design factor for a dynamic system. Unfortunately, it is not a
simple matter to determine the natural frequency of a damped system
experimentally by means of the u-v curve, because the peak response
spreads over a finite range of v. Nevertheless, since the phase angle ¢
is always 90° at resonance when v = W it becomes simpler and more

accurate to check the phase shift.
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u(t)

Fig. 1.2.5 Damped free vibration

u, £, u,f, usfy

(b) Free body diagrams

1. 3. A three-degree-of-freedom system
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(iii) Damped free vibration:
Damping ratio { # O
Forcing function f(t) =0

Initial conditions : ugs u(o) = ho

The solution is
u(t)

1 . .
exp(- Cwnt)[u0 cos wdt + o (uown + uo) sin wdt]

exp(- cwnt)ﬁ sin (vt + @) (1.2.86)

where u° = us + [(uown + h&z/wZ] and 6 is an angle dependent on u, and

ﬁo. Eq.(1.2.6) is represented graphically in Fig. 1.2.5. Whenever
sin(wdt + 6) = 1, the response curve is tangential to the exponential
envelope curves given by #*u exp(—Cwnt). It should be noted that

the tangents are not horizontal at the points of tangency and the points
of tangency are not at the points of maximum amplitude exactly. However,
the discrepancy is negligible and the amplitude at the point of tangency
may be taken as the local maximum amplitude. The logarithmic decrement &
is defined as

_El . exp(- {wnt1)

u, - exp [- Cwn(t1 + 1)1

8 = 1n

= Iln(exp CwAr) = Cwnr

where T is the period of damped oscillation and is equal to Zn/wJ

Thus finally, the logarithmic decrement is given by & = 2nl/V1 - c%

Other vibration response, such as the impulsive h(t), and the
stepped g(t), can be derived similarly.

For a single-degree-of-freedom system, only one equation of motion
is involved, and the decoupling of equations by means of eigenvectors is
not required. On the other hand, for multi-degree-of-freedom system, the
decoupling of equations is essential. The natural frequencies and modes

are important factors which make the modal analysis successful.

1.3. VIBRATION OF MULTI-DEGREE-OF-FREEDOM SYSTEMS

1..8.1. Introduction. For a multi-degree-of-freedom system, it is more
convenient to use matrix notation to describe the vibrational behaviour.
Let {u} denote the displacements of the n mass points, with ui(i =
1,2,....,n) measured from their static equilibrium positions, then the

equations of motion are in the form of



