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Random matrices arise from, and have important applications to, number
theory, probability, combinatorics, representation theory, quantum mechanics,
solid-state physics, quantum field theory, quantum gravity, and many other
areas of physics and mathematics.

This volume of surveys and research results, based largely on lectures given
at the Spring 1999 MSRI program of the same name, covers broad areas
such as topologic and combinatorial aspects of random matrix theory; scaling
limits, universalities, and phase transitions in matrix models; universalities for
random polynomials; and applications to integrable systems. Its stress on the
interaction between physics and mathematics will make it a welcome addition
to the shelves of graduate students and researchers in both fields, as will its
expository emphasis.
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Preface

This volume represents the most recent trends in the random matrix theory
with a special emphasis on the exchange of ideas between physical and mathe-
matical communities. The main topics include:

e random matrix theory and combinatorics
¢ scaling limits; universalities and phase transitions in matrix models
o topologico-combinatorial aspects of the theory of random matrix models

o scaling limit of correlations between zeros on complex and symplectic mani-
folds

Most contributions are based on talks and series of lectures given by the authors
during the MSRI semester “Random Matrix Models and Their Applications” in
Spring 1999, and have an expository or pedagogical style.

One of the basic ideas of the MSRI semester was to bring together the lead-
ing experts, both physicists and mathematicians, to discuss the latest results in
the theory of matrix models and its applications. The book follows this line:
it is divided roughly in half between physics and mathematics. The papers by
physicists (G. Cicuta; Ph. Di Francesco; V. Kazakov; G. Mahoux, M. Mehta,
J.-M. Normand; P. Zinn-Justin) give an overview of different physical problems
in which the random matrix theory plays a decisive role, along with a rich variety
of methods and ideas used to solve the problems. This includes enumeration of
Feynman graphs on Riemann surfaces in the context of two-dimensional quantum
gravity, spin systems on random surfaces, “meander problem” and random fold-
ings, enumeration of knots and links, phase transitions and critical phenomena
in random matrix models, interacting matrix models, etc.

The papers by mathematicians are devoted to recent breakthrough results
on the statistics of longest increasing subsequence in random permutations and
related problems of representation theory (J. Baik, E. Rains; A. Borodin, G. Ol-
shanski; A. Its, C. Tracy, H. Widom; K. Johansson; A. Okounkov), universality
of correlations between zeros on complex and symplectic manifolds (P. Bleher,
B. Shiffman, S. Zelditch), applications of Hankel matrices to the theory of ran-
dom matrices (E. Basor, Y. Chen, H. Widom), orthogonal polynomials (M. Is-
mail), interpolation properties of the ensembles of random matrices (P. For-
rester, E. Rains), and integrable systems in the theory of random matrix mod-

ix
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els (J. Harnad and P. van Moerbeke). The paper of 1. Kostov, I. Krichever,
M. Mineev-Vainstein, P. Wiegmann, and A. Zabrodin is written by physicists
and mathematicians and it relates conformal maps to integrable systems and
matrix models.

We would like to express our gratitude to the MSRI Director, David Eisenbud,
and the Deputy Directors, Hugo Rossi and Joe Buhler, for their help and support
during the semester. We thank the series editor, Silvio Levy, for suggesting the
publication of this volume and for his careful editing.

Our work in organizing the MSRI semester “Random Matrix Models” and the
present volume was partially supported by the School of Science of Indiana Uni-
versity — Purdue University Indianapolis and through NSF Grants DMS-9970625
(Bleher) and DMS-9801608 (Its). We gratefully acknowledge this support.

Pavel Bleher
Alexander Its
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Symmetrized Random Permutations

JINHO BAIK AND ERIC M. RAINS

ABSTRACT. Selecting N random points in a unit square corresponds to se-
lecting a random permutation. Placing symmetry restrictions on the points,
we obtain special kinds of permutations: involutions, signed permutations
and signed involutions. We are interested in the statistics of the length (in
numbers of points) of the longest up/right path in each symmetry type as
the number of points increases to infinity. The limiting distribution func-
tions are expressed in terms of a Painlevé II equation. In addition to the
Tracy-Widom distributions of random matrix theory, we also obtain two
new classes of distribution functions interpolating between the GOE and
GSE, and between the GUE and GOE? Tracy-Widom distribution func-
tions. Applications to random vicious walks and site percolation are also
discussed

1. Introduction

Suppose that we are selecting n points, p1, ps,. .., Pn, at random in a rectangle,
say R = [0,1] x [0,1] (see Figure 1). We denote by 7 the configuration of n
random points. With probability 1, no two points have same z-coordinates nor
y-coordinates. An up/right path of 7 is a collection of points p;,,pi,, - - -, Pi,
such that z(pi,) < z(pi,) < --- < z(pi,) and y(pi,) < y(ps,) < -+ <y(pi,). The
length of such a path is defined by the number of the points in the path. Now
we denote by [, (7) the length of the longest up/right path of a random points
configuration 7.

As one can see from Figure 1, a configuration of n points gives rise to a per-
mutation. For the example at hand, the corresponding permutation is (; f g ; Z)
Therefore we can identity random points in R and random permutations, and we
use the same notation 7. In this identification, [,,(7) is the length of the longest
increasing subsequence of a random permutation.

The longest increasing subsequence has been of great interest for a long time
(see [AD2], [OR], [BDJ1], for example). Especially as n — oo, it is known
that E(l,) ~ 2y/n [LS], [VK1; VK2] (also [AD1; Se; Jo2]) and Var(l,) ~ con'/3
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Figure 1. Random points in a rectangle.

[BDJ1] with some numerical constant ¢y = 0.8132---. Moreover, the limiting
distribution of /,, after proper scaling is obtained in [BDJ1] in terms of the
solution to the Painlevé II equation (see Section 3 for precise statement). An
interesting feature is that the limiting distribution function above is also the
limiting distribution of the (scaled) largest eigenvalue of a random GUE matrix
[TW1], the so-called “GUE Tracy-Widom distribution” F,. In other words,
properly centered and scaled, the length of the longest increasing subsequence of
a random permutation behaves statistically for large n like the largest eigenvalue
of a random GUE matrix. There have been many papers concerning the relations
on combinatorics and random matrix theory: we refer the reader to [Re; Ge; Ke;
Ra; Jo2; BDJ1; BDJ2; TW3; Bo; Jol; Jo4; Ok; BOO; TW4; Jo3; BR1; BR2;
ITW; St; PS2; PS1; Ba; BR3|. The purpose of this paper is to survey the
analytic results of the recent papers [BR1; BR2] and discuss related topics.

In random matrix theory, three ensembles play important roles, GUE, GOE
and GSE (see [Me], for example). Since random permutation is related to GUE,
it would be interesting to ask which object in combinatorics is related to GOE
and GSE. For this purpose, we consider symmetrized permutations. In terms of
random points, 5 symmetry types of the rectangle R are considered, denoted by
the symbols O, 1, N, [J, and ®. Throughout this paper (and also in [BR1; BR2]),
the symbol ® is used to denote an arbitrary choice of the five possibilities above.
Let 6 = {(¢,t) : 0 < t < 1}, the diagonal line, and §* = {(t,1 —¢) : 0 <t < 1},
the anti-diagonal line. Consider the following random points selections:

O select n points in R at random.

A select n points in R\ § and m points in ¢ at random, and add their reflection
images about 4.

N select n points in R\ é* and m points in §* at random, and add their reflection
images about ¢?.

O select n points at random in R, and add their rotational images about the
center (1/2,1/2).
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® select n points in R\ §, m4 points in § and m_ points in ¢ at random, and
add their reflection images about both § and §t.

Define the map ¢ on S, by ¢(z) = n+ 1 — z. Let fp(r) denote the number of
points satisfying 7(z) = z, and fpi(n) denote the number of points satisfying
m(z) = «(x) (fpi represents negated points: see Remark 3 below). Each of the
processes above corresponds to picking a random permutation from each of the
following ensembles:

SE = Sﬂa
SEm = {‘"- € S2n+m T = 7r—1, fp(ﬂ') = m}’
SE,m = {7T € Sontm i W= Lﬂ'—ll,, fp1(7r) = m},

SY = {r € Sy : 7 =1m},

-1

SEm+,m_ = {T€Suntam, +2m_:m=n"1, m=ur~ Yy, fp(r)=2m,, fpi(r)=2m_}.

We denote the length of the longest increasing subsequence (equivalently, the
longest up/right path) of m in each of the ensemble respectively by
S
LS’ Lg,m’ Ln,m’ LE’ LE

n,my,m_"*

REMARK 1. The map 7 — ¢~ !m gives a bijection between SEm and SE‘m.
Thus LT has the same statistics with the length of the longest decreasing
subsequence of a random involution with m fixed points taken from SE" m- From
the definition, L2, is the random variable describing the length of the longest

increasing subsequence of a random involution taken from the same ensemble.
REMARK 2. We may identify Ss, with the set of bijections from
{-n,...,-2,-1,1,2,...,n}

onto itself. In this identification, ST becomes the set of signed permutations;
m(z) = —m(—z). The longest increasing subsequence problem of a random signed
permutation is considered in [TW3] and [Bo].

REMARK 3. Under the identification in Remark 2, SEm+,m_ becomes the set
of signed involutions with m, fixed points and m_ negated points (we call z a

negated point if 7(z) = —z.)

In this paper, we are interested in the statistics of L® as n — oco. Especially for
@, N and R, we are interested in the cases when m = [v/2na] for @, m = [v2nf)
for N, and m, = [\/na] and m_ = [y/nf] for ® with fixed o, 8 > 0 where [k]
denotes the largest integer less than or equal to k. Then for most cases, the
expected values have the same asymptotics. Namely, if we set N = n,2n +
m,2n + m,2n,4n + 2m, + 2m_ for each of 0,1, N, [, K case respectively, we

have o)
E(L
li =2
Novoo VN
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when 0 < @ < 1 and B > 0 are fixed for @, N and ®. When o > 1, we have
different expected value in the limit (see Section 3.)

On the other hand, the variance behaves asymptotically like coN'/? but now
with different constant ¢, depending on the symmetry type. It is because each
symmetry type has different limiting distribution: LY has GUE fluctuation,
LY. GOE fluctuation and LY GUE? fluctuation (see Section 3 below for precise
statements). Here GUE? denotes the statistics of a superimposition of eigenval-
ues of two random GUE matrices. Similarly for GOE?. The cases of 1 and X
show more interesting features. For [, the limiting distribution function changes
depending on the value of @ = m/v/2n. The fluctuation is GSE when a < 1,
GOE when o = 1 and Gaussian when o > 1. By taking suitable scaling limit
o — 1, we can find a certain smooth transition between GSE and GOE. For
K, the value o = m4 /y/n determines the limiting distribution ; the value m_
plays no role in the transition. The fluctuation is GUE when a < 1, GOE? when
a = 1, and Gaussian when a > 1.

In Section 2, we define the Tracy~-Widom distributions for GUE, GOE and
GSE as well as new classes of distribution functions describing the transition
around o = 1. Main results are stated in Section 3, and Section 4 includes some
applications and the related problems. Most of the results in this article are
taken from [BR1; BR2]. Theorems 3.1 and 3.5 for O were first proved in [BDJ1],
and Theorem 3.1 for [ was first obtained in [TW4; Bo]. The only new result is
Theorem 4.2.

2. Tracy—Widom Distribution Functions
Let u(z) be the solution of the Painlevé II (PII) equation,
Uze = 2u® + zU, (2-1)
with the boundary condition
u(z) ~ —Ai(z) as z — 4oo, (2-2)

where Ai is the Airy function. The proof of the (global) existence and the
uniqueness of the solution was first established in [HM]: the asymptotics as  —
—o0 are (see [HM; DZ2], for example)

e—(4/3)2**
u(z)=—Ai(z) + 0(——1/4—>, as T — +00, (2-3)
T

u(z)z—\/__;v(l + 0(5)) a8 {5 —i50. (2-4)
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e—(2/3)z?
Recall that Ai(z) ~ N as £ — +o00. Define
T
v(z) :-—-/ u(s)? ds, (2-5)

so that v'(z) = u(z)?.

We introduce the Tracy-Widom distributions. (Note that ¢ := —u, which
Tracy and Widom used in their papers, solves the same differential equation
with the boundary condition g(z) ~ + Ai(z) as z = 00.)

DEFINITION (TRACY-WIDOM DISTRIBUTION FUNCTIONS). Set

F(z) := exp(% /oo v(s) ds) = exp <—% /OO(S — z)u(s)? ds),
E(z) := exp(% /00 u(s)ds),

oo

and set

Fy(z):= F(z)* = exp(—/ (s — x)u(s)? ds),

Fi(z) := F(z)E(z) = Fy(z)"/?e3 I (o) ds
e_% S u(s)ds 4 e% 3 u(s)ds

Fy(z) := F(z)(E(z)™" + E(z)) /2 = Fy(z)'/? 5

In [TW1; TW2], Tracy and Widom proved that under proper centering and
scaling, the distribution of the largest eigenvalue of a random GUE/GOE/GSE
matrix converges to Fy(z) / Fi(z) / Fs(z) as the size of the matrix becomes
large. We note that from the asymptotics (2-3) and (2-4), for some positive
constant c,

F(z)=1+ O(e'“m) as T — 400, (2-6)
E(z)=1+ O(e‘czm) as T = 400, (2-7)
F(z) = O(e_c|“’]3) as  — —o0, (2-8)
E(z) = O(e—chﬁ/’) as T — —00. (2-9)

Hence in particular, lim, o Fs(z) = 1 and lim,;,_ Fz(z) =0, 8 = 1,2,4.
Monotonicity of Fjg(z) follows from the fact that Fg(z) is the limit of a sequence
of distribution functions. Therefore F3(z) is indeed a distribution function.

As indicated in Introduction, we need new classes of distribution functions to
describe the phase transitions from GSE to GOE and from GUE to GOEZ. First
we consider the Riemann-Hilbert problem (RHP) for the Painlevé II equation
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[FN; JMU]J. Let T be the real line R, oriented from +o00 to —oc. Let m(-;x) be
the solution of the following RHP:
m(z; ) is analytic in z € C\ T,
1 _e—2i(%23+zz)

mesi2) = m-(552) ( g en ) ozl @)

0
m(z;z) =1+ 0(1) as z — 0.

Here m, (z;x) and m_ are the limits of m(z';z) as 2/ — z from the left and right

of the contour I': m4(z;z) = lim. o m(z Fi¢; z). Relation (2-10) corresponds to

the RHP for the PII equation with the special monodromy datap = —g¢=1,r =

0 (see [FN; JMU]J, also [FZ; DZ2]). In particular if the solution is expanded at
B = B,

m(z;:r)=1-+—m17(w)+0(zi2), as z — 00, (2-11)
we have
2i(m1(z))12 = —2i(m1(x))21 = u(z),
2i(my(z))22 = —2i(ma(x))11 = v(z),

where u(z) and v(z) are defined in Equations (2-1) to (2-5). Therefore the
Tracy—Widom distributions above are expressed in terms of the residue at oo of
the solution to the RHP (2-10). It is noteworthy that the new distributions below

which interpolate the Tracy—Widom distributions require additional information
of the solution of RHP.

DEFINITION. Let m(z; ) be the solution of RHP (2-10) and denote by m(z; z)
the (jk)-entry of m(z;z). For w > 0, define

F?(z;w) := F(z)
X ((ng(—iw;m)-mlz(—iw;:c))E(J:)_l+(mgg(—iw;x)+m12(—iw;I))E(m))/?,
and for w < 0, define
F2(z;0) = 3" "2V F(z)
x ((—mzl(—iw; z)+myy (—iw; 7)) E(z) " = (may (—iw; 2)+muy (—iw; z))E(z)) /2.
Also define

F¥(z;w) 1= mas(—iw; 2) Fa(x), w >0,

F(z;w) = —e3¥ "2y (jw; 2)Fy(z), w <0,

First F2(z;w) and F®(z;w) are real from Lemma 2.1(i) below. Note that
F2(z;w) and F®(z;w) are continuous at w = 0 since at z = 0, the jump
condition of the RHP (2-10) implies

(m12)+(0; ) = —(m11)-(0; z),

(m22)+(0;z) = —(m21)-(0; 2).
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In fact, F@(z;w) and F®(z;w) are entire in w € C from the RHP (2-10).
From (2-6)—(2-9) and Lemma 2.1(ii) below, we see that
IHTM F?(z;w), F¥(z; w) = 1, lim F?(z;w), F®(z;w) = 0
for any fixed w € R. Also Theorem 3.3 below shows that F@(z;w) and F®(z;w)
are limits of distribution functions, implying that they are monotone in . There-
fore, F?(z;w) and F®(z;w) are indeed distribution functions for each w € R.
We close this section summarizing some properties of m(—iw;z) in the fol-
lowing lemma. In particular the lemma implies that F?(z;w) interpolates be-
tween Fy(z) and Fi(z), and F®(z;w) interpolates between Fy(z) and F(z)?
(see Corollary 2.2).

LEMMA 2.1. Let oz = () _}), o1 = (3), and set [a,b] = ab — ba.

(i) For real w, m(—iw;x) is real.
(i) For fized w € R, we have

_J8uwd2zw
m(—iw;z) = (I + e—“a/z) ((1) ¢ ] ) : w >0, > +oo,
. _ 1 0
m(—zw;‘r): (I+€ Cz3/2) (_e_gw3+21w 1) ¥ w<0,m—)+oo,

k)

m(—iw; ) ~ \/i_(i _1)e(—§w3+zw)oae(%(—z):’/2+\/'2w2(-g;)‘/z)a3
2 w> 0,z —oo,
m(—iw; ) L( 1 1)e(—%w3+IW)°se(—’g(—z)a”-\/ﬁwz(—z)l”)va,

T Ve\-11

w<0, > —o0.

(iii) For any z, we have

lim m(—iw;z) = lim oym(-iw;z)o;
_ ( L(E@)?+ E(x)™%) -E(z)? (2-12)
"~ \3(-E(@) + E(2)7?) E(a:)2) ‘

(iv) For fized w € R\ {0}, m(—iw;z) solves the differential equation

—m = w[m, 03] + u(z)orm,

dz
where u(z) is the solution of the PII equation (2-1), (2-2).

COROLLARY 2.2. We have

F2(z;0) = Fy(z) , li_r’noo F2(z;w) = Fy(z), EIII F9(z;w) =0,
F8(z;0) = Fi(z)?,  lim F¥(z;w) = Fy(z), lim F®(z;w) = 0.

PROOF. The values at w = 0 follow from (2-12). For w — %00, note that from
the RHP (2-10), we have lim,_, . m(z;z) = I. 0
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3. Main Results

As in the Introduction, let N denote n,2n + m,2n + m,2n,4n + 2m, + 2m_
for each of 0,4, N, [, X case respectively. We scale the random variables: for
permutations and involutions,

o L2-2VN a L2,.-2VN g I8.-2VN
Xn = _—N_l/g—! Xnm = _W;—_v Xn,m = _‘W_v
and for signed permutations and signed involutions,
I, ST WY,
Xn = 92/3N1/6 Xnmy,m_ = 92/3\'1/6

All the results in this section are taken from [BR2] which utilizes the algebraic
work of [BR1].

First, we state the results for random permutations and random signed per-
mutations. The result for random permutations was first obtained in [BDJ1],
and the result for random signed permutations in [TW4; Bo].

THEOREM 3.1. For fired z € R,
. (] < —
Jim Pr(x; < z) = Fa(x),
2 O] — 2
Jim Pr(x; < z) = Fa(z)%.
For the involution cases, we have the following limits.

THEOREM 3.2. For each fized o and (3, and for fized x € R, we have: for @,

lim Pr(XE,[s/ﬁa] < :r) = Fy(z), 0<ax<l,

n—00

Jim Pr(x7 /zm < 2) = Fi(@),
nanéo Pr(xs[ Bra] < z) =0, a>1;
for N,
Jim Pr(x, mg < 2) = File),  B20;
and for X,
Jim PT(XE,[ﬁa],[ﬁg] < z) = Fy(z), 0<a<l, >0,
Jim Pr(xf’[m,[\/;[,] <z) = F(z), B >0,
nan;o Pr(xf,[ﬁa],[ﬁﬂ] <z)=0, a>1, f>0.

This theorem shows that for @ and X, the limiting distributions differ depending
on the value of a. As indicated earlier in the Introduction, as & — 1 at a certain
rate, we obtain smooth transitions. From Corollary 2.2, the following results are
consistent with Theorem 3.2.



