


Proceedings

Twelfth Annual IEEE Conference on
Computational Complexity

(Formerly: Structure in Complexity Theory Conference)

June 24-27, 1997
Ulm, Germany

Sponsored by

The IEEE Computer Society Technical Committee on
Mathematical Foundations of Computing

In cooperation with
ACM-SIGACT and EATCS

With support from

Ulmer Universitdts-Gesellschaft, Daimler Benz, the Sparkasse Ulm
and the Universitat Politecnica de Catalunya

IF_EE 1.

COMPUTER
SOCIETY

Los Alamitos, California
Washington e  Brussels o Tokyo




Copyright © 1997 by The Institute of Electrical and Electronics Engineers, Inc.
All nights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons. those articles in this volume that
carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid

through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint. or republication requests should be addressed to: [EEE Copynghts Manager, IEEE
Service Center, 445 Hoes Lane. P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page.
They rejlect the authors’ opinions and, in the interests of timeiv dissemination, are published uas presented
and without change. Their inclusion in this publication does not necessarily consittute endorsement by the
editors, the IEEE Computer Soctery, or the [nstitute of Elecirical and Electonics Engineers, Inc.

[EEE Computer Society
Customer Service Center

ZEE
ISEN
ISBN
ISEN

ISSN:

10662 Los Vaqueros Circle

P.O. Box 3014

Los Alamitos. CA 90720-1314

Tel: + 1-714-821-8380
Fax: + 1-714-821-4641

E-mail: cs.books@computer.org

Cover ant production by Joseph Daigle/Studio Productions

Catalog

1093-0159

Number
0-8186-7307-7

0-7803-4267-4
0-8186-7909-3

Additional copies may be ordered from:

[EEE Service Center
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331

Tel: + 1-908-981-1393
Fax: + 1-908-981-9667

mis.custserv@computer.org

97CB35072
(sofcound)
(casebound)
(microfiche)
IEEE Computer Society

13, Avenue de I"Aquilon
B-1200 Brussels
BELGIUM

Tel: + 32-2-770-2198
Fax: + 32-2-770-8505
euro.ofc@computer.org

Editorial production by Penny Storms

[EEE Computer Society
Ooshima Building

2-19-1 Minami-Aoyama
Minato-ku. Tokyo 107
JAPAN

Tel: + 81-3-3408-3118
Fax: + 81-3-3408-3553
tokyo.ofc @computer.org

Printed in the United States of America by Sony Electronic Publishing Services

IEEE ®
COMPUTER
SOCIETY

©

IEEE



Proceedings

Twelfth Annual IEEE Conference on
Computational Complexity

(Formerly: Structure in Complexity Theory Conference)



Foreword

This volume collects the 27 papers accepted for presentation at the Computational Complexity Conference
held June 24 t0 27, 1997, in Ulm, Germany. They were selected from among the 75 submissions. gathered
eiectronically (with a single exception) after publicauon of the call for papers. It also contains the texts on which some
of the Program Committee members (Harry Buhrman, Pierluigi Crescenzi, Georg Gottlob, and Klaus Wagner) based
the survey talks that they contributed to the conference.

It must be pointed out that. whereas a few of the submissions received a substanual amount of feedback. the
short time available and the large effort needed to fuily referee a paper in our arca impiy that these texts must de
considered, in generai. only as extended research abstracts. We anticipate that most of them will eventually appear. in
final. fully refereed form. in the customary scientific journals.

The Program Commuittee met in Barceiona for the seiection. after conducting some brief discussion through
electronic mail. In light of the experience. the Program Commuttee Charrman has deduced a few observations
regarding eieconic submissions to conterences and electronic versus presenual seiection committees. and will do nis
best to write them up.

We are thankful to those organizatons that provided support for the conference. A large number of
individuals ment acknowledgment for their help in vanous ways. Apoiogizing to those that we nsk 10 omit, thanks are
aue to: first and foremost, all the individuais who suomitted their scienufic work. with or without success, for the
success of the conference lies primarily on them: Sam Rebeiski and Rob Schapire, who ailowed for the use of theiwr
respective software systems to help with the organization of eiectronic submissions and with conducting preliminary
e-mail discussions; Conrado Marunez, who heiped to instail part of the software: and the foilowing subreferees iour
apologies for the list not being, perhaps, exhaustive):

Sergio De Agostino. Jean-Paul Allouche, Carme Alvarez, Andris Ambainis, Klaus Ambos-Spies, V.
Arvind. Giorgio Ausiello, Cristina Bazgan, Richard Beigel, Michael Ben-Or, Dan Boneh, Ravi Boppana,
Bernd Borchert, Stéphane Boucheron, Andrea Clementi, Nadia Creignou, Antonella Crest, Alain Denise.
Bruno Durand, Chnstophe Dirr, Thomas Eiter. Juan Luis Esteban, Kousha Etessami, Uri Feige,
Wenceslas Fernandez de la Vega, Lance Fortnow, Kim Gabarré, Péter Gdcs, Nicola Galesi, Ricard
Gavalda, Oded Goldreich, Judy Goldsmith, Etienne Grandjean, Fred Green, Serge Grigorieff, Vince
Groimusz. Peter Grunwaid. David Guijarro; Péter Hajnal, Armin Haken, Montse Hermo, Steve Homer,
Russell Impagiiazzo. Sandy Irani, Birgit Jenner, Viggo Kann, Sampath Kannan. Lila Kar. Claire Kenyon.
Sanjeev Khanna, Johannes Kdbler, Sven Kosub, Klaus-Jorn Lange, Huong Le-Thanh, Matthew Levy,
Wolfgang Lindner. Antoni Lozano. Carsten Lund. Jack Lutz. Janos Makowsky, Elvira Mayordomo, Pierre
McKenzie. Pster Bro Miltersen, Angelo Monu. Martin Mundhenk, Noam Nisan, Mitsunori Ogihara.
Rarail Ostrovsky, Erez Petrank, Yuri Rabinovitch. Omer Reingoid, Steffen Reith, Heinz Schmitz, Uwe
Schéning. Lex Schrijver, Rainer Schuler. Maria Serna, Avy Sharell, Riccardo Silvestri. Anatol Slissenko,
Martn Strauss. Manio Szegedy, Gdbor Tardos, Amnon Ta-Shma. Bas Terwijn. Denis Thérien, Thomas
Thierauf, Jacobo Tordn, Leen Torenviiet. Luca Trevisan, John Tromp, Wim van Dam. Peter van Emde
Boas, Dieter van Meikebeek. Helmut Veith, Paul Vitanyi. Heribert Vollmer, Osamu Watanabe, Chns
Wiison, and Fatos Xhafa.
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1997 Best Student Paper Award

CCC’97
Best Student Paper Award

The program committee of the 1997 Conference on Computational Complexity is proud to
present the Best Student Paper Award to Cristoph Karg of the University of Ulm. This award is given
annually to the most outstanding paper written solely by one or more students. The paper selected this
year by the CCC Program Committee is

LR(k) Testing is Average-Case Complete
by

Cristoph Karg

Congratulations to the winner !
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Six Hypotheses in Search of a Theorem

Harry Buhrman-®

Sir. we are trulv six special and interesting
characrers. Believe ns. However we have
sone lost.

- *Six Characters in Search of an Author.”
Luigi Pirandeilo.

Abstract
We consider the following six hvpotheses:
¢« P =NP.
e SAT is truth-table reducible to a P-selective set.

e SAT is truth-rable reducible o a k-
approximable set for some k.

s FPA\]‘P = FPNPTII)g;
e SAT is O(log nj-approximable.

e Solving SAT is in P on formulae with at most
one assignment.

We discuss rheir imporrance and relationships among
them.

“URL: http:, , www.cwi.nl/cwi,/ people/ Harry.Buhrman.hunl.

E-mail: buhrman@cwi.nl. Partially supported by the Duich
fonndation for scientific research (NWO) by SION project
$12-34-002, and by the European Union through Neuro-
COLT ESPRIT Working Group Nr. 8336, and HC& M
grant ar. ERB4050PL93-0516. CWI, Kruislaan 413, 10985
Amsterdam. The Netherlands.

TURL: http://www.cs.uchicago.edu/ fortnow. Email: fort-
now@cs.uchicago.edu. Supported in part by NSF grant CCR
92-33582. the Dutch Foundation for Scientific Research (NWO)
and a Fulbright Scholar award. CWI and University of
Chicago. Department of Computer Science 1100 E. 38th. St.
Chicago. IL 60637. USA.

URL:  http://turing.wins.uva.nl, “leen/. E-mail:
leen@wins.uva.nl.  University of Amsterdam. Department
of Computer Science. Plantage Muidergracht 24. 10ISTV
Amsterdam, The Netherlands.

Lance Fortnow?

Leen Torenvliet:

1 Introduction
Complexiry theorists have pur considerable etfors inro
investigating the structure and properties of sers in
NP. This researcn led ro various

survey j

yorheses.

rwe put togerner. lor the nrs

hvporheses thar we encountered in our own rese
as well as in the lirerature. We believe thar rhese
hypotheses are important and are closely related ro
each other.

The first hypothesis is: "P = NP.” This is the
most famous and important one and does not need
any further introduction.

Most sets in NP that arise from practice turn ot
to be NP-complete. \loreover since complete sers
reflect the structure of a complexity class they receive
ciose attention. Three of our six hypotheses concern
sets that are complete or hard for NP.

Selman [Sei&2] introduced the P-selective sers in
analogue of recursion theorv. A set is called P-
selective iff there exists a polynomial time computable
function that from two strings r and y selects one that
(if at least one belongs to ) is in 4. He investigated
the possibility for NP to have hard sets that are P-
selective. He showed [Seis2] thar this can not be the
case for many-one reductions (unless P = NP). This
was later improved to <7_,, reductions by Buhrman
and Torenviiet [BT96b]. The hypothesis we are in-
terested in is: “NP has a truth-table hard set that 1s
P-selective.”

Beigel [BeiSTal, looking at properties of bounded
queries to sets (in NP), developed a generalization of
P-selective sets later dubbed the approximable sets.
A set A is k-approximable if there exists a polyno-
mial time computable function that with k& strings
Iy,....ZIy as input, generates k bits by.... by such
that for at least 1 bit it is true that b, # val(z,}.
That is from the 2% possible settings of r,,... . one
is excluded. Beigel. Kummer and Stephan [BKS95].
Agrawal and Arvind [AA96]. and Ogihara [0gi95]



showed that NP can not have <}, -hard sets that are
k-approximable for some & (unless P = NP). Since
P-selective sets are in fact 2-approximable sets this
resuit also improves the bound for P-selective sets.
The hypothesis related to this work is: “INP has a
truth-table hard set that is k-approximable for some
k.

Ogihara [Ogi95] working on the hypothesis that
NP has a truth-table hard P-selective set, took it
one step further and considered f(n)-approximable
sets for non-constant functions f(n). He showed that
if SAT is not alog(n)-approximable for a < 1 un-
less P = NP. This result subsumes the results on
truth-table reductions to k-approximable sets (see
Section 3). The hypothesis connected to this work
is: “SAT is O(log(n))-approximable.”

The next hypothesis states that it is possible to
compute SAT in polynomial time when we only con-
sider formulae with at most one satisfying assign-
ment. It is possible to phrase this in terms of sets
as: “Unique-SAT € P” (see Section 2). Valiant
and Vazirani [VV86] showed that this set problem for
SAT is hard for NP under randomized reductions.

The last hypothesis deals with functions that are
computable in polynomial time relative to some set in
NP. There are essentially three different ways to de-
fine this. The most unrestricted way is that the poly-
nomial time computable function has unrestricted ac-
cess to an NP oracle and is called FPNF. The next
restriction to the oracle mechanism is that the queries
have to be non-adaptive: FP{F. The last and
most restrictive version is that only O(log(n)) queries
are allowed on inputs of length n: FPNPIogl  The
last hypothesis can now be stated as: FPNPllogl —
FPIF ‘

o

These are the main characters of our paper. We
show that these hypotheses are closely related to each
other and in Section 3 we show which of these hy-
potheses implies any of the others. Furthermore we
give background information on each of them individ-
uaily and we indicate which problems are still open.
The main open question however is to show that any
two of these six hypotheses are equivalent.

We should note that probably all of the six hy-
potheses are false since all of them imply that
NP C P/poly and this on its turn implies that
the polynomial time hierarchy collapses to its second
level [KL80J.

Until recently no oracles were known that showed
that any of these hypotheses are different from each
other. However recent progress has been made in this
direction (see Section 7).

2 Preliminaries

We assume the reader familiar with basic notions of
computation and complexity theory as can be found
e.g. in [HU79, BDG88, BDGY0, GJ79] and many
other textbooks.

Central to the six hypotheses in this paper however
are the following notions, which we will highlight here
by separately defining them.

Definition 2.1 A set A is called P-selective iff
there erists a polynomial time computable function
f (called p-selector function) such that for any two
strings = and y, f(z,y) € {z.y} and if z ory isin A
then f(z,y) is in A.

For a set A we will identify A with its characteristic
function. Hence for a string z, 4A(z) € {0,1} and
A(r) = 1 iff £ € A. For two strings z and y and
a P-selective set A. a p-selector excludes one of the
four possibilities for the string A(z)A(y) (either 01
or 10 is impossible). A generalization extends this
exclusion to one of the possible settings for the string
A(zy)...A(zg) for some function k(n). For constant
k, this notion was called “approximability” of sets
(see Beigel et al. [BKS95]).

Definition 2.2 A function g is called an f-
approzimator for a set A if for every zy,... ,Tm with
m Z f(ma-x{lzllv' g |Iml),

9(21,... axm) € {Ovl}m

and
(A(z1),.-- ,Alzm)) # 9(z1,... ,Zm)

A set A is then called f-approzimable if it has an f-
approzimator. A is bounded-approximable, or 4 €
bAPP if A is k-approzimable for some constant k.

The notion f-approximability was called f-
membership comparability by Ogihara [Ogi95] who
was the first to consider this notion for nonconstant
functions. Beigel [Bei87a| uses the term “approx-
imable” to represent bAPP. Sets which are not in
bAPP Beigel calls superterse.

Amiir, Beigel and Gasarch [ABG90] show that ev-
ery bAPP language is in P/poly. Ogihara [Ogi95]
notices that their proof generalizes.

Theorem 2.3 (Amir-Beigel-Gasarch-Ogihara)
If A is f(n)-approzimable for any polynomial f(n)
then A is in P /poly.

We use the function Fgar which on input
®1,... ,0n returns a string z € {0,1}", where z; = 1
iff ¢; € SAT. We will also need classes of functions



that are computable by queries to SAT. Depending
on the number of queries and the type of oracle access
these are defined as follows.

Definition 2.4 A function f is in FPH‘p if there
ezists a polynomial time bounded oracle machine M
that computes f with non-adaptive queries to some
language in NP.

Note that Fgar is FPfTP complete. A set is sparse
if there exists a polynomial p such that for each length
n it contains at most p(n) strings. Let SPARSE
denote the class of all sparse sets.

A truth-table reduction from A to B is disjunctive
(4 <, B) if it accepts iff one of it queries is in B.

Definition 2.5 A function f is in FPNPU8! if there
is a polynomial time bounded oracle machine that
computes f using O(logn) (adaptive) queries to some
language in NP.

Definition 2.6 Let QQ denote a boolean predicate. we
define the set Unique-SATq as follows.
For any formula =

0 if z € SAT
1 if = has 1

satisfying assignment
Q(z) Otherwise

Unique-SATg(z) =

If there exists a predicate @Q such that
Unique-SATq is polynomial time computable
then we will say “Unique-SAT € P.”

The notion of bounded nondeterminism was intro-
duced by Kintala and Fischer in [KF30].

Definition 2.7 Let f be any function. We define
NP(f(n)) = {L | L C {0.1}" and there is a con-
stant ¢ such that L is accepted by a polynomial time
bounded Turing machine making at most f(n) c-ary
nondeterministic moves}

Kintala and Fischer denote NP(f(n)) as Py(n-

Definition 2.8 A function f(z) is h(n)-enumerable
iff there ezists a polynomial-time computable function

9(z) = {y1,--- ,Yn(n)} Such that for every z, f(z) €
g9(z). A function f(z) is poly-enumerable f(z) is n®
enumerable for some c.

There is a very useful connection between FP;“P =
FPNPlogl and the enumerability of Fsar [Bei87a].

Lemma 2.9 (Beigel) FP)F = FPNPlogl if gng
only if Fsar is poly-enumerable.

Proof:
(Fpﬁ"’ = FPNP = Fgar is poly-enumerable)

Fsgat € FPfTP, so by assumption it is in FPpNPllog]
There are polynomially possible answers for the oracle
queries of the FPNP(°8i machine. Cycling through
them yields an enumeration of Fsar.

(Fsar is polynomial enumerable = FP;‘I‘P = FpNP )
On input ¢y,...,¢; each of size at most n one can
enumerate n¢ vectors by, ... bne such that b; = Fgar
for some i. Next one can use binary search to some
suitable oracle in NP to find b;, using log(n¢) + 1
queries. O

We will need the following definition of the dimen-
sion of a family of sets, called Vapnik-Chervonenkis
dimension {VCT1]:

Definition 2.10 Given a family of sets F the
Vapnik-Chervonenkis dimension of F or V(-
dimension is the largest number d such that there ez-
ists a set 4 with {4 =d and |{ANF|Fe F}| =
24, If such a d does not ezist the VC-dimension of F
is oc.

Sauer [Sau72] and independently Shelah [She72]
proved the following lemma. Sauer notes that Paul
Erdos originally posed this as a question.

Lemma 2.11 If F is a family of sets with VC-
dimension at most d then for any set A with |A] = n:

d
ANF|FeF) < (")
N < (]

Forn>d>1, Z';O () is bounded by n? + 1.
Moreover the proof of Lemma 2.11 is constructible:
Suppose we have a polynomial-time algorithm that
on S = zy,...,Z4+1 computes a subset of S that
isnotin {ANF | F € F}. Lemma 2.11 gives us
a polynomial-time algorithm to compute {A N F |
F € F} in time polynomial in n and the sizes of the
elements of A.

3 Relations

In this section we will show which of the six hypothe-
ses implies any of the others. The relations are given
in Figure 1.

Theorem 3.1 P = NP = SAT </, Psel.

Proof: If P = NP then SAT is in P and reduces to
any set. O



P = NP

]

SAT <%, Psel

l

SAT <% bAPP

‘!l SAT is O(logn) approximable

FPA;'P . FPNP[lOg]
N
Unique-SAT in P

Figure 1: Relations

Theorem 3.2 SAT <, Psel = SAT <%, bAPP

Proof: Note that every P-selective set is 2-
approximable. O

Theorem 3.3 SAT <, bAPP = Fpﬁ‘P =
FPNP[IOgI.

We first prove the following lemma due to
Beigel [Bei87a, Bei87b).

Lemma 3.4 (Beigel) If A is k-approzimable then
there exists a function f which computes for any n

k=1 (n
numbers zy,... ,Zn a set of at most 3, (7) vectors
from {0,1}" which contains F:(:rl,... ,Tn). More-
over f runs in time polynomial in n and the size of
the largest string in z1,... ,Zn.

Proof: Let g be the function that k-approximates A.
Define the following family of sets:

F ={B| g is a k-approximator for B}

It follows that the VC-dimension of F is at most
~ =1. We then apply the constructible version of
Lemma 2.11. O

We now give the proof of Theorem 3.3.
Proof: Let M witness the fact that SAT truth-table
reduces to a k-approximable set A. let f € FPﬁ‘P via
machine M. On input z, My computes the follow-
ing queries q, ... ,q to SAT, for | some polynomial.
Next reduce each of these queries to A with M, yield-
ing a set of queries gqj,...,qp, for I’ a polynomial.
Next we apply Lemma 3.4 to generate vk many dif-
frrent vectors, containing F,’.‘(q{, ... ,q;). From these
Vectors one can generate [ v many vectors containing

FPAT(qy,... ,q). FPYF = FPNFI°! follows from
Lemma 2.9. O

The following theorem is implicit in [Bei88,
Tod91b]

Theorem 3.5 (Beigel-Toda)
FP\? = FPPI°8l = Unique-SAT is in P

Proof: We have to show that there is a polynomial
time algorithm that tells formulae with exactly one
satisfying assignment apart from ones that are unsat-
isfiable. Consider the function f(®) that on input ¢
with variables z,...,zs returns by ...b; such that
b; = 1 iff there is a satisfying assignment to ¢ with
z; = 1. This function is in F‘Pﬁ‘P and hence, by as-
sumption in FPNPlogl  Syppose we are given a for-
mula ¢ with exactly 1 satisfying assignment. Then f
will return exactly this assignment. Since there are
only polynomial many possible answers to the log(n)
queries to SAT, one can enumerate all the possible
values of f in P. We can check that one of the gen-
erated values is indeed a satisfying assignment to o.
On the other hand if ¢ was unsatisfiable we would not
have generated a satisfying assignment, since none ex-
ists. O

Theorem 3.6 FP)¥ = FPNPlogl - SAT is

O(log(n))-approzimable.

Proof: By Lemma 2.9 we have that Fgar is m° enu-
merable for some ¢ where m is the input length of
Fsar. Given any 2clog(n) formulae ¢1,. .., ®aciog(n)
each of size at most n. The size of these 2clog(n)
formulae is bounded by 2clog(n) x n and thus
Fsar(91, » baclogm)) is 2°/98ECl8mIxm) < pevl
enumerable. Thus one of the n*¢ vectors for Fsar
has not been enumerated. O

4 Selective and Approximable

The question whether sets that have simple structure
could be hard for NP dates back to the Berman-
Hartmanis conjecture [BH77] and subsequent work
by Mahaney for sparse sets {Mah82]. Following sparse
sets, the first sets of simple structure to be considered
were the P-selective sets introduced by [Sel79].
P-selective sets, though of arbitrary complexity,
are structurally simple sets. The p-selector function
induces an ordering that reduces the number of possi-
ble “membership configurations” of two strings. For
a P-selective set A and two strings =z and y either
€ ANy g Aory € ANz € A is ruled out



by the p-selector. This property makes P-selective
sets structurally as simple as being Turing equiva-
lent to tally sets [Sel82]. Generalizing the structural
restriction: “Not all 2" membership configurations
of n strings are possible” has induced many related
notions. Among the many notions that pertain to
this idea are: P-selective sets [Sel79, HHN*95], near-
testable sets [GHJY91], k-approximable sets (see
below), (a,b),-recursive sets [KS91], Easily count-
able sets [HN93], Cheatable sets [Bei87a, BGGO93].
(a,b),-verbose sets [BKS], and Membership compa-
rable sets [Ogi95].

Because of the structural relation between P-
selective sets and sparse sets, one might not be tno
surprised that hardness of P-selective sets for NP
is as unlikely as hardness for NP of sparse sets. It
is quite easy to see that SAT itself cannot be P-
selective unless P = NP. Buhrman and Toren-
vliet [BT96b] showed that SAT cannot be l-rt re-
ducible to a P-selective set.

Toda [Tod91aj, building upon insights provided by
Ko [Ko33], proved that in the special case of the ex-
istence of only one satisfying assignment, reduction
to a P-selective set would imply polynomial time de-
cidability. In fact Toda's results hold for the more
general k-approximable sets. In this section we cite
all results for k-approximable sets. Since P-selective
sets are k-approximable sets with k£ = 2. all these re-
sults also hold for P-selective sets. Similar ideas were
obtained independently by Beigel [Bei88].

Theorem 4.1 (Beigel-Toda)
1. P =UP if and only if UP <!, bAPP.

2. Unique-SAT € P if and only if Unique-
SATg <, bAPP for some Q.

3. P = NP if and only iff A} </, bAPP

4. P = PSPACE if and only PSPACE <’
bAPP.

5. EXP £}, bAPP

The Turing reduction of bAPP sets to sparse sets
(Theorem 2.3) allows us to apply the famous Karp-
Lipton theorem [KL80] showing a collapse of the
polynomial-hierarchy if SAT is Turing-reducible to
a sparse sets.

Theorem 4.2 (Karp-Lipton) If SAT <% bAPP
then PH = £

or in its currently sharpest form proved in [BCG™96,
KW95].

Theorem 4.3 (BCGKTKW) If SAT <% bAPP
then PH = ZPPNP

Both directions of strengthening the consequence of
SAT <% bAPP and weakening the reduction type
r in SAT <? bAPP = P = NP are currently the
subject of active research. Of course in the present
context the latter type is the more interesting. In
1994 a major breakthrough was achieved by three
independent sets of authors: Beigel, Kummer and
Stephan{BKS95]. Agrawal and Arvind[AA96] and
Ogthara[Ogi93].

Theorem 4.4 (AABKOS) If SAT </, bAPP
then P = NP

Or in its currently strongest form

Theorem 4.5 (AABKOS) If SAT <*._,, to
some k-approzinable set for some a < T-—L then
P = NP.

For P-selective sets k& = 2 and hence a < 1 follows.

To understand this result we first show a rela-
tionship between reducing to bAPP and rlogn-
approximability.

Theorem 4.6 If SAT <’._,, to some k-
approzimable set for some a < i; then SAT
is rlogn approzimable for somer < 1.

Proof: Note that in Lemma 3.4 the number of vec-
tors is actually bounded by &£ xn*~!. Hence if we have
rlogn formulae @, ... ,oriog n We can reduce these to
a k-approximable set A via a reduction that produces
n® queries for a total of (rlogn)n® < r x n? where
3 < 2. Applying Lemma 3.4 gives (r x n?)¥~!
vectors including the characteristic vector of these
formulae. Hence if 1 > r > k—fl- we can exclude at
least one possibility, which means that SAT is r log n-
approximable. O

We can then apply the following result from [AA96,
BKS95. Ogi95].
Theorem 4.7 (AABKOS) If SAT 1is rlogn-
appro.rimable for somer <1 then P = NP.

To give a flavor of the proof we prove the following
weaker result.

Theorem 4.8 If SAT is 2-approzimable, then P =
NP.

Proof: Given a formula ¢, apply the standard self-
reduction to produce four formulae @, ¢, @3, o4
with the property that o is satisfiable iff at least one



of these formulae is satisfiable. Now let f be a 2-
approximator and let f(@y V &2,01 V @3) = (b1, b2).
If by = by = 0 then ¢ is satisfiable and we’re done. If
{by,b9) is (1,0) then &> can not be the only satisfiable
formula. If (by,b3) = (0.1) then ¢3 can not be the
only satisfiable formula. Finally, if (b;,5:) = (1,1)
then @, is not satisfiable.

It all cases one formula in the self-reduction can be
" discarded and the corresponding branch in the self-
reduction tree ends. Hence the self-reduction can be
expanded always keeping only four formulae in the
game. When all remaining self-reduction branches
are extended to their full length, satisfiability of ¢
can be decided trivially. O

A polynomial (even fixed) number of queries in
Theorem 4.3 is not yet in sight, nor does the proof
technique seem to be extendible to obtain such a re-
suit. On the other hand there is no known oracie
where P # NP and SAT <%, Psel.

The notion of P-selectivity has been extended to
other types of selector functions ((HHN*93)) for these
(mostly nondeterministic) selector types similar re-
sults are known. These are however outside the scope
of this paper.

The value r < 1 seems to be a real bottleneck of
the technique (see [Ogi93] for a discussion) used for
the proof, but on the other hand no oracle is known
where P # NP and SAT is O(logn)-approximable.

5 F ITP — FPNP[log]
At first glance one might think that FPﬁ'P =
FPNPIos] since this is true for the language classes:
PP = pNPllogl (BHO1, Wag90]. Indeed this result
vields that FPﬁ”p = FPNPU8l when only functions
are considered that compute log(n) output bits (i.e.
functions from {0,1}" to {0,1}°!oe(®))  However
FP?‘P = FPV Pl implies Unique-SAT in P and
rhis implies that the polynomial hierarchy collapses
(see Section 6). For overview papers on functions
classes and related problems see {JT93, JT97, Sel96].
In Lemma 2.9 we saw that FPI‘TP = FpNPigl
is equivalent to Fsar being polynomial enumerable.
Ve can use these ideas to get equivalences of FPﬂ‘p =
FPNPUIo8] (5 many other hypotheses.

Theorem 5.1 The following are equivalent:

. FP.I‘IIP — FPNP{lOg]

. F‘Pﬁ‘p C FPX(°8] for some oracle X. [Bei88]

e Fsar is polynomial enumerable.

e Every NPSV function is polynomial enumer-
able.

where NPSV is the class of single-valued nondeter-
ministic functions (see [Sel96]).

Some progress has been made on showing the
equivalence with P = NP. Jenner and Toran [JT95]
showed that FPﬁ‘p = FPNPUog]l jmplies that SAT
can be computed in less than 2" time. They also
showed that languages recognized by nondeterminis-
tic polynomial time machines that make log*(n) non-
deterministic moves are in P.

Theorem 5.2 (Jenner-Toran) If FPﬁ"p
FPNPUogl then

1. NP C DTIME(2°"/ """y,
2. NP(log*(n)) C P.

Buhrman and Fortnow showed that the FP‘TP =

FPYPUegl gyestion can be phrased as a question on
resource bounded Kolmogorov complexity [BF97].

Theorem 5.3 (Buhrman-Fortnow) The follow-
ing are equivalent:

L. CND*(z | y) < C**¥(z | y) + O(log(|a1))-
2. CND”"(z | y) < CD"*¥(z | y) + O(log(|z])).
3. FPNF = FpNFllos],

The connection with Kolmogorov complexity en-
ables one to use Theorem 5.2 to prove:

Theorem 5.4 (Buhrman-Fortnow) If FP)F =

FPNPUoS] then the class of languages accepted by
nondeterministic polynomial time machines that have
at most 218" (m) accepting paths on inputs of length n
is included in P.

On the other hand it follows from [Ogi95] that

Theorem 5.5 [f FPYF C FpNPlalogn] for some

3logn
1>J > a then P =NP.

All the above results have not established the
equivalence with P = NP. We note here that in
order to obtain an equivalence it is sufficient to prove
that FPF = FPNFlesl o pNP = pINP by the fol-
lowing theorem.

Theorem 5.6

PNP = PP and FP|F = FPNPlsl — p = NP



