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PREFACE

This book provides an introduction to matrix theory, and aims to
provide a clear and concise exposition of the basic ideas, results and
techniques in the subject. It combines the algebraic and analytic aspects of
matrix theory. It presumes no knowledge beyond school mathematics although
some familiarity with elementary calculus would be helpful in a few of the
applications. It is hoped that the book can be profitably used by a wide
range of students, including students of mathematics, engineering, science,
and other disciplines where matrices arise. Complete proofs are given,
although some are relegated to appendices at the end of chapters. This
should enable the book to be used both by students who want all of the
theory and those who are mainly interested in learning the techniques. The
text is interspersed with many examples, applications and numerous exercises
for the reader. Students who have already done an introductory linear
algebra course may use the later chapters for a more advanced course.
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Chapter 1

MATRICES AND LINEAR EQUATIONS

A familiarity with matrices is necessary nowadays in many areas of
mathematics and in a wide variety of other disciplines. Areas of mathematics
where matrices occur include algebra, differential equations, calculus of
several  variables, probability and statistics, optimization, and  graph
theory. Other disciplines using matrix theory include engineering, physical
sciences, biological sciences, economics and management science.

In this first chapter we give the fundamentals of matrix algebra,
determinants, and systems of linear equations. At the end of the chapter we
give some examples of situations in mathematics and other disciplines where

matrices arise.

1.1 Matrices and matrix algebra

A matrix is a rectangular array of symbols. In this book the symbols
will usually be either real or complex numbers. The separate elements of the
array are known as the entries of the matrix.

Let m and n be positive integers. An mxn matrix A consists of m rows

and n columns of numbers written in the following manner.



We often write A = (aij) for short. The entry aij lies in the i-th row and
the j-th column of the matrix A.

Two mxn matrices A = (aij) and B = (bij) are equal if and only if all
the corresponding entries of A and B are equal.
ie. aij = bij for each i and j.

The sum of the mxn matrices A = (aij) and B = (bij) is the mxn matrix
denoted A + B which has entry a + bij in the (i,j)-place for each 1i,j.

Let A be a scalar (i.e. a real or complex number) and let A = (aij) be
an mxn matrix. The scalar multiple of A by A is the mxn matrix denoted AA
which has entry }\.aijin the (i,j)-place for each i,j.

1.1.2 Proposition

The following properties hold.

i) A+ B =B + A for all mxn matrices A and B, i.e. addition of matrices
is commutative.

(1) (A +B) + C= A + (B + C) for all mxn matrices A,B, and C, i.e.addition
of matrices is associative.

(iii) (A + B) = AA + AB for all scalars A and all mxn matrices A and B.

(iv) 0‘1 + Xz)A = klA + sz for all scalars Xl,lz and all mxn matrices A.

v) (XIKZ)A = XI(XZA) for all scalars 11,7\.2 and all mxn matrices A.

These properties follow at once from the properties of the real and
complex number systems.
1.1.3 Remark

If we write -A for the matrix whose entries are -a, for each 1i,j then
-A = (-1)A, ie. the multiple of the matrix A by the scalar -1. Also if we

denote by O the nxn matrix with zero as each entry then A + (-A) = O.



1.1.4 Matrix multiplication

A 1xn matrix will be called a row vector of length n and an mx1 matrix

will be called a column vector of length m.

Let A = (al a a; ... a) be a 1xn matrix and B = bl be an nx1 matrix.

b2

n

We define the product AB to be the 1x1 matrix with the single entry

Now we will define matrix multiplication in general. We say that the
product AB of the two matrices A and B is defined if and only if the number
of columns of A equals the number of rows of B.

(i.e. AB is defined if and only if A is an mxn matrix and B is an nxp matrix
for some integers m,n,p.)

We define the matrix product AB to be the mxp matrix which has as

its (i,j)-entry

ab +ab +ab + +ab.
il 1y i2 2 i3 3j in nj

(In shorthand notation the (i,j)-entry is Z aikbk,.)

k=1
In other words the (i,j)-entry of AB is the product of the i-th row of A
with the j-th column of B, this product being as in the special case of 1xn

and nx1 matrices defined above.

1.1.5 Example

Let A =

1-1 6 -1 612
4 1-2(,B=|0-221].
320 1 111

1 -1 6)/(-1 612 5 14 5 7
Then AB =14 1-2|110-221| =1|-6 20 4 7|.
32 0/(1 111 31



1.1.6 Proposition
The following properties hold.
(i) (AB)C = A(BC) whenever these products are meaningful.
(i.e. matrix multiplication is associative).
(ii) AB + C) = AB + AC for all mxn matrices A,B and all nxp matrices C.
(iii) (A +B)C = AC + BC for all mxn matrices A and B and all nxp matrices C.

Proof

(i) Let A,B,C be of sizes mxn, nxp, pxq respectively.

n

The (,k)-entry of AB is Z airbrk and hence the (i,j)-entry of (AB)C

r=1

is Z Z a b Cy An examination of the product A(BC) shows that exactly the

same expression occurs as the (i,j)-entry of A(BC).

(i) Let A be of size mxn, B and C of size nxp.
Then the (i,j)-entry of A(B + C) is kElalk(b + ckj) and this is easily

seen to equal the (i,j)-entry of AB + AC.

(iii) This follows in a similar manner to (ii).
1.1.7 Remark

Matrix multiplication is not in general commutative. Note first that
for AB and BA to both be defined it is necessary that A and B are each nxn
matrices for some integer n, i.e. square matrices of the same size. However
AB and BA will be different in general.
1.1.8 Exercise

Let A = [; g] B = [(2) 3] Show that AB # BA.
1.1.9 Remark

A matrix of especial importance is the nxn identity matrix, denoted In,
which is defined to have entries a = 1 for all i and a, = 0 for i # j.

Often when we are dealing with nxn matrices for a fixed value of n we



will simply write I for the identity matrix omitting the suffix n.
For any mxn matrix A it is easy to see that AIn = A and that [ A = A.

1.1.10 The transpose of a matrix

Let A be an mxn matrix.
The transpose of A is the nxm matrix with entry aji in the (i,j)-place. The
transpose of A is denoted by A'.
Note that the rows of A become the columns of A' and vice versa.
1.1.11 Proposition
The transpose satisfies the following properties.
(i) (A + B)' = A" + B' for all mxn matrices A and B.
(i) (AY' = A for all mxn matrices A.
(iii) (AB)' = B'A' whenever the product AB is defined.
Proof

Easy exercise.
Let A be an mxn matrix whose entries are complex numbers.
The conjugate transpose of A is the nxm matrix with entry éji in the
(i,j)-place. The conjugate transpose is denoted A'.
The conjugate transpose satisfies the same three properties as
those for the transpose given in (1.1.11).

1.1.12 The trace of a square matrix

Let A be an nxn matrix.

We define the trace of A by trace A = a.
i=1
The trace of A is a single real or complex number.
1.1.13 Proposition
The trace has the following properties.
(i) trace (A + B) = trace A + trace B for all nxn matrices A and B.

(ii) trace (AA) = A trace A for all nxn matrices A and all scalars A.



(iii) trace A' = trace A for all nxn matrices A.
(iv) trace AB = trace BA for all nxn matrices A and B.

Proof

Easy exercise to prove (i),(ii), and (iii). To prove (iv) note that the

(i,i)-entry of AB 1sjzlaijbji which yields that trace AB :izl Z]aijbji.
Since both i and j are being summed from 1 to n this last double sum is
symmetric in A and B and thus it must also give the value of trace BA.

Problems 1A

-1 2 321
1.LetA=[%§],B=[j‘(‘)],C= 21|, D= |4-6 0|
1 3 1-2-2

Calculate each of the following matrix products;

AB, CA, DC, DCAB, A%, D% A’B®

1 1 0 1 n n(n-1)
2. Let A = |0 1 2|. Prove by induction that A" = |0 1  2n |.
0 01 00 1
3. Let A be an mxn matrix and B an nxp matrix. Let Bl’Bz’ o ,Bp denote the

columns of B. Show that ABl’ABz" . .,ABp are the columns of AB.

If Al’Az" .. ,Am denote the rows of A show that AlB’AzB" . ,AmB are the
rows of AB.

4. Let A be an nxn matrix with entries in F. If AB = BA for all nxn matrices
B with entries in F show that A = OLIn for some a € F, ie. A is a scalar
multiple of the identity matrix.

5. Let A be an nxn matrix with complex entries. If trace A'A = 0 show that A

is the zero matrix.

n n
(Hint - show that trace AlA=Z Z |ai,|2 where |z| denotes the modulus of
; . J
i=lsl
the complex number z.)

6. Let Eij denote the nxn matrix with entry 1 in the (i,j)-place and zero

elsewhere. Show that any nxn matrix A = (aij) is expressible in the form



n n

A i;,—zlaﬁE“'

Show also that EE =0 if j#k, and EE = E. .
ij kl ij jl il

7. Let the nxn matrix X be partitioned as follows ;

X = [é g] where A is a pxp matrix, B is a pxq matrix, C is a gqxp matrix, and

D is a qxq matrix where p + q = n.

Let Y = [g }l;] be an nxn matrix partitioned in a similar way. ( i.e. E is a

pxp matrix etc.)

Show that the product XY is partitioned as follows.

XY_AE+BG AF + B
“|CE + DG CF + DH

1.2 Systems of linear equations

A system of simultaneous linear equations

11 1272 In 1
ax +ax +..... +a x =
a*1 T A%, B b,
X + + ... +a x =b
4 11 4 2X2 mn m
in n unknowns XXy oo.o. X can be rewritten as a single matrix equation
n

Ax = b where A = (aij) is an mxn matrix, b = (bi) is a column vector of
length m, and x = (xi) is a column vector of length n.

We assume that the entries of A and b are real.

A solution of the system is an n-tuple of real numbers (ocl,az, LLo)

n

such that X, = o for each 1 = 1,2,

. for each i = 12,.. ,n satisfies each of the m

equations.

The solution set of the system is the set of all solutions of the



system. It is a subset of R". There are three possibilities for the solution

set of the system;
(i) there is a unique solution, i.e. the solution set consists of a
single point,
(ii) there are infinitely many solutions,
(iii) there are no solutions at all, i.e. the solution set is empty.
(In this case we say that the equations are inconsistent.)
For m < n only possibilities (ii) and (iii) can occur whereas for
m 2 n all three possibilities can occur.
We illustrate this with a few simple examples;

1.2.1 Example

2x1 + ?rx2 =38
3x1 - 3x2 =2
This system of two equations in two unknowns has the unique solution X, = 2,

x, = 4/3.
Geometrically the two equations each represent a line in the plane and the

solution set of the system is the point of intersection of the two lines.

1.2.2 Example

2x1 + 3x2 =8

4xl + 6x2 =16
This system of two equations in two unknowns has infinitely many solutions.
Specifically X, =, x = (8 - 200)/3 for any o € R will be a solution.
Geometrically the two equations each represent the same line in the plane

and the solution set of the system is the infinite set of all points on this

line.



1.2.3 Example

]
o)

2x1 + 3x2
4x1 + 6x2 =3
This system of two equations in two unknowns has no solutions, the two
equations being inconsistent.
Geometrically the two equations represent two parallel lines and so there
are no points common to the two lines.
1.2.4 Example
X, + 2)(2 X, = 3
X - X, - X, = 2
Adding these two equations yields 2xl + X, = 5. This gives X = 5 - 2x1.
Substituting into the first equation of the system then gives
x3=3—x1-2x2=3~xl-2(5-2x1)=3x1-7.
Thus X, is free to take any real number value and X, and X, are then given
in terms of X
The solution set is { (o, 5 - 2, 300 - 7) ; & € R }.
Geometrically the two equations of the system each represent a plane in R’
and the solution set is the line of intersection of the two planes.
1.2.5 Remark
In this last example m = 2, n = 3, ie. there are more unknowns than
equations. In that situation a unique solution to the system cannot be
expected. There is insufficient information to be able to obtain a unique
value for the unknowns so that possibility (i) cannot occur.
Geometrically two equations in three unknowns represent two planes in
R’. These two planes can either intersect in a line as in example (1.2.4) or
else be parallel and so have no points of intersection, i.e. the solution

set of the corresponding system 1is the empty set. Similar geometric



