

Biological Membranes

Theory of transport, potentials and electric impulses

CAMBRIDGE

BIOLOGICAL MEMBRANES

Theory of transport, potentials and electric impulses

OVE STEN-KNUDSEN

Professor Emeritus of Biophysics University of Copenhagen

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt System LATEX $2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Sten-Knudsen, Ove.

Biological membranes : mass transfer, membrane potentials, and electrical impulses / by Ove Sten-Knudsen.

p. cm.

Includes bibliographical references and index.

ISBN 0 521 81018 3 (hb)

1. Neural conduction – Mathematical models. 2. Action potentials

(Electrophysiology) - Mathematical models. 3. Mass transfer. 4. Biophysics. I. Title.

QP363 .S775 2002 571.6'4 - dc21 2001052488

ISBN 0 521 81018 3 hardback

BIOLOGICAL MEMBRANES

This graduate text, suitable for students of physiology and biophysics, and medical students specializing in neurophysiology and related fields, provides a comprehensive discussion of biological mass transfer and bioelectrical phenomena. Emphasis has been given to the applicability of physics, physical chemistry and mathematics to the quantitative analysis of biological processes, with all the necessary mathematical grounding provided in Chapter 1.

The quantitative analysis is broken into four key stages:

- · formulation of a biological/biophysical model,
- derivation of the associated mathematical description of the model,
- · solution of the mathematical expression, and
- interpretation of the mathematical solution to a biological explanation.

This book guides the student through these stages, which are central to the understanding of cell membrane functions.

To Nan-Marie Helge, Nina and Henrik

此为试读,需要完整PDF请访问: www.ertongbook.com

Foreword

I was delighted when my friend Ove Sten-Knudsen asked if I would write a Foreword to this English translation of his book on biological membranes. I confess that I then had no idea of the immense scope and magisterial quality that I found when I saw the proofs. I wish that such a book had been available in the days when I was concerned with membranes and ion movements: I often had to struggle through the derivation of equations that are here worked through step by step. This will be invaluable not only to students but to the many biologists who work on membranes and use mathematics but are not themselves mathematicians in the full sense of the word. It will also be a major convenience to have the whole background collected in a single volume, instead of being scattered in numerous articles and books.

Another feature that gives me great pleasure is the biographical notes on the authors of classical papers in the field. Whenever one of those great men is mentioned for the first time, there is a footnote telling us his dates, where he worked and his main achievements. This is a welcome contrast to the usual practice of merely giving a name with no indication that it refers to an actual human being.

The book's title hardly does justice to its content: as well as dealing with the properties shared by all cell membranes, it includes very full accounts of the fundamentals of nerve conduction and of synaptic transmission. These were established half a century ago and nowadays they are too easily taken for granted while emphasis is put on the more modern studies of ion channels that followed from them.

This book will be a godsend to all who aim for a quantitative understanding of membrane phenomena.

Sir Andrew Huxley, OM, FRS Cambridge April 2002

Preface

I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but if you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind: It may be the beginning of knowledge, but you have scarcely in your thought advanced to the stage of science.

Lord Kelvin, 1883

The phenomena of mass transfer and electric activity across biological cell nembranes involve a variety of complex processes. To be able to understand and describe these basic mechanisms it is essential to have a thorough insight into the nature of mass transfer by migration, diffusion, and electrodiffusion, and of concepts and fundamental principles of physics and physical chemistry. It is difficult to understand and describe processes in a biological membrane without leaning on the knowledge of mechanisms that operate in simpler systems. In describing transport processes through a cell membrane, we use the concepts of simple passive transport theory. Command of these concepts is the basis on which one performs a quantitative analysis of processes that are observed experimentally.

The purpose of the present book is to give an overall account of diffusion, electrodiffusion, equilibrium potentials, diffusion potentials and membrane potentials, and, in this connection, to take relevant examples from membrane physiology/biophysics to illustrate the use of these tools in a quantitative analysis of the experimental results. It is hoped that the text may be of use to undergraduate studies in general physiology/biophysics and to some postgraduate researchers.

The mathematical background needed to read the book corresponds to the level of a college student graduating in science. These prerequisites for reading the book are presented in **Chapter 1**. They serve to refresh the memory of the reader, making frequent use of cross-reference in the following chapters. In the

xxii Preface

following chapters, the mathematical build-up is developed in detail without requiring an additional mathematical course. In this respect the book is self-contained. The presentation of the mathematics is deliberately written in a user-friendly manner, intended for readers who are not professional mathematicians or physicists. Therefore, the mathematical derivations are written out in detail, which may appear unnecessarily detailed to a reader who is skilled in handling mathematics. It is my experience that in this way most readers with no basic training in mathematics can be brought to understand – and later to apply – rather complicated mathematics. On the other hand I do not want to conceal the fact that at places the reader *is* confronted with problems that unavoidably are rather complicated to handle. But the reader will never meet the rather condescending phrase: 'it is easily seen that . . . '.

The theory of mass transfer by diffusion, migration, and by the superposition of these processes, is developed in **Chapter 2**. The chapter starts by introducing principles of migration flux and diffusion flux that define the associated parameters mobility and diffusion coefficient. This leads to the law of mass conservation (the diffusion equation). The exposition is based upon macroscopic considerations. Later these processes are reconsidered from the microscopic point of view of *Brownian motion* and *Boltzmann statistics*. I regard the introduction of these complementary aspects to be particularly useful to understand mass transfer across cell membranes. To solve the time-dependent diffusion equation no use is made of integral transforms, a mathematical technique that is beyond the scope of this book. Ludwig Boltzmann used an inspired transformation that by simple allowed him means to find a particular solution of the diffusion equation in terms of the Error function. The presentation in this book succeeded in using adaptations of this solution to solve both the new diffusion problems in **Chapter 2** and to handle problems in the remaining chapters.

Chapter 3 deals with the theory of transport of ions in aqueous solutions, as well as the origin of electric potential differences across cell membranes, i.e. membrane potentials. The basis for this is the theory of *electrodiffusion*: diffusion superimposed upon migration of ions with an electric field as driving force. The chapter starts by introducing the necessary concepts: electric potential and field, electric conductance of a single ion and of a mixture of ions. The Nernst–Planck equations, the equations of electrodiffusion most frequently occurring in electrophysiology, follow as a natural sequel of the general transport equation in Chapter 2. The condition of *electroneutrality* is assumed to hold almost throughout. The *equilibrium potential* across a membrane is introduced by applying the Nernst–Planck equation to the transport across an ion selective permeable membrane. The Donnan system is treated partly by making use of a thermodynamic argument and partly by using the Poisson–Boltzmann equation

Preface xxiii

to determine the potential and concentration profiles. The treatment of the diffusion potential begins by considering the concentration differences of a single salt. This is followed by the descriptions of the general diffusion regimes of Planck and by Henderson which both relate to a membrane that is separated by mixtures of electrolytes of different composition. Membrane potentials in living biological cells will be described as complex diffusion potentials. Of common interest are three types of membrane whose properties are described in detail: (1) the anion/cation selective permeable membrane; (2) the constant field membrane (Goldman equation), and (3) the mosaic membrane, each type having its own merits. The chapter ends by comparing the membrane potentials obtained in experiments on a living single frog-muscle cell with those predicted from theory.

Most readers of this book are assumed to be biologists seeking an in-depth understanding of biological transport and bioelectrical phenomena. **Chapter 4** comprises a bridge between the theoretical treatment and some fundamental biological experiments performed in nerve (and muscle) fibre. Thus the chapter is essential for demonstrating the applicability of physics and physical chemistry to biology. Furthermore, it contains analyses not been treated in the previous chapters (e.g. cable analysis). The chapter starts by summarizing the basic properties of nerve excitability and impulse transmission. The emphasis is the meticulously planned and epoch-making work on the axon of the squid (*Loligo*) by A.L. Hodgkin & A.F. Huxley, with participation of B. Katz and R.D. Keynes. The experimental results were interpreted and followed by a quantitative analysis accounting for the origin of the action potential in the giant nerve of the squid. The lessons to be learned from this work extend far beyond its relation to nerve activity.

Chapter 5 presents the important investigations of Katz and co-workers on the processes involved in the neuromuscular transmission, where statistical arguments were used to account for their observations.

It should be emphasized that the aims of **Chapter 4** and **Chapter 5** are not to provide an up to date review of the field. The examples chosen only serve the didactic intentions of this book.

The basis of the present book is a similar text published in Danish in 1995* aimed at students of general physiology, biophysics and postgraduate researchers in neuromedicine. The present book is the result of many revisions and it has been supplemented with new sections.

I wish to thank my colleagues professor Rodney Cotterill, Dr phil & scient, Professor Erik Hviid Larsen, Dr scient, and Professor Ulrik V. Lassen, Dr med.,

^{*} O. Sten-Knudsen (1995): Stoftransport, membranpotentialer of elektriske impulser over biologiske membraner. Akademisk Forlag, København.

xxiv Preface

for their encouragement to write the manuscript and for their help and advice in connection with its submission for publication; likewise Senior Lecturer Jørgen Warberg, Dr med., Head of Department of Medical Physiology for hospitality and assistance, and to Senior Lecturer Per Hedegaard, Lic. scient., and Mr Peter Busk Laursen, UNI-C, for instruction in handling some special typesetting problems. Ms. Nina Sten-Knudsen has given great help in making the line drawings. My particular thanks goes to Senior Researcher Else Marie Bartels, Ph.D., D.Sc., for giving me the inestimable help in reading the proofs of the book and in the completion of the index and the list of references.

I am most grateful to the Press Syndicate of The Cambridge University Press and their staff for publishing the book, in particular Dr Shana Coates, Editor (Biological Sciences), for in her friendly manner of directing the manuscript (and its author) from beginning to completion, and Mrs Beverly Lawrence for her expert copy-editing of a difficult manuscript and for excellent communication via e-mail, and also to Ms Carol Miller, production controller.

My thanks are also due to the authors referred to in the legends for kindly allowing me to copy figures from their papers and for confirming their permissions in writing, as well as to editors of the journals: *J. Physiol.*, *J. gen. Physiol.*, *Biophys. J.*, *Proc. R. Soc. Lond.*, *Progr. Biophys.*, *Nature*, *J. Neuro-physiol.*, *Amer. J. Physiol.*, *Amer. J. Med.*, *Arch. Sci. Physiol.* and to Liverpool University Press, McGraw-Hill Education, Charles C. Thomas Publisher and University of California Press.

The Carlsberg Foundation has kindly supported the work by grants to providing the author with the adequate EDP equipment and to cover expenses related to the publication of the book.

Finally, it gave me great pleasure that Sir Andrew Huxley, OM, FRS, kindly agreed to write the Foreword to the book. I also greatly appreciated the concomitant constructive comments to the text.

Ove Sten-Knudsen Gentofte, May 2002

Contents

	Foreword	page x1x
	Preface	xxi
1	Mathematical prelude	1
	1.1 Introduction	1
	1.2 Basic concepts of differential calculus	2
	1.2.1 Limits	2
	1.2.2 Functions	2
	1.2.3 The derivative	3
	1.2.3.1 A few derived functions	6
	1.2.4 Approximate value of the increment Δy	6
	1.2.5 Differential	8
	1.2.5.1 The chain rule	9
	1.2.5.2 The derivative of the inverse function	10
	1.3 Basic concepts of integral calculus	11
	1.3.1 Definite and indefinite integral	12
	1.3.2 The fundamental law	14
	1.3.3 Evaluation of a definite integral	15
	1.3.4 The mean value theorem	17
	1.4 The natural logarithm	18
	1.4.1 Definition of the natural logarithm	18
	1.4.2 Elementary properties of the logarithm	19
	1.4.2.1 Logarithm of a product	20
	1.4.2.2 Logarithm of a quotient	21
	1.4.2.3 Logarithm of an exponential	22
	1.5 The exponential function	22
	1.5.1 Definition of the exponential function	22
	1.5.2 Derivative and integral	25

viii Contents

2

1.6 Taylor's theorem	20
1.6.1 Taylor and Maclaurin series	26
1.6.1.1 Expansion of a polynomial	26
1.6.1.2 Expansion of an arbitrary function	27
1.6.1.3 The binomial series	28
1.6.2 Series of the logarithmic and exponential functions	30
1.6.2.1 The logarithm	30
1.6.2.2 The exponential function	31
1.6.3 Approximate expressions of functions	32
1.6.4 Evaluation of an undetermined expression 0/0	33
1.7 Basic techniques of integration	34
1.7.1 The method of substitution	34
1.7.2 Partial integration	36
1.8 Functions of several variables	38
1.8.1 Geometrical representation	40
1.8.2 Partial derivatives	40
1.8.3 Total differential	43
1.8.4 The chain rule once more	45
1.9 Some ordinary differential equations	49
1.9.1 Four first-order differential equations	50
1.9.1.1 The equation $y' + \alpha y = 0$	51
1.9.1.2 The equation $y' + \alpha y = K$	52
1.9.1.3 The equation $y' + \alpha y = Q(x)$	53
1.9.1.4 The equation $y' + P(x)y = Q(x)$	53
1.9.2 Two second-order differential equations	55
1.9.2.1 The equation $y'' + \kappa^2 y = 0$	55
1.9.2.2 The equation $y'' - \kappa^2 y = 0$	56
1.10 A note on partial differential equations	57
Migration and diffusion	62
2.1 Introduction	62
2.2 Flux	65
2.3 Types of passive transport	65
2.4 Migration	66
2.4.1 Friction coefficient and mobility	66
2.4.2 Migration flux	68
2.5 Diffusion	70
2.5.1 Phenomenological description	70
2.5.2 Diffusion flux (Fick's law)	73
2.5.2.1 The diffusion coefficient	74
2.5.2.2 A simple application of Fick's law	75

	Contents	ix
2.5.3 The	diffusion equation	76
2.5.3.1	Diffusion with mass conservation	77
2.5.3.2	Diffusion with concurrent mass production	79
2.5.3.3	Classification of diffusion processes	79
2.5.4 Stati	onary diffusion processes	80
2.5.4.1	One-dimensional diffusion	81
(i)	Diffusion through a plate	81
(ii)	Diffusion through two adjoining, different media	84
(iii)	Unstirred layers	87
(iv)	Plate covered on one side by a membrane	
	of permeability P	89
(v)	Diffusion with mass consumption	91
2.5.4.2	Diffusion in a cylinder with radial symmetry	99
(i)	The diffusion equation	100
(ii)	Diffusion through a cylindrical shell	103
(iii)	Diffusion in a cylinder with mass consumption	105
(iv)	Diffusion from a cylinder into the surrounding	
	medium with mass consumption (Krogh's	
	cylinder)	108
2.5.4.3	Diffusion with radial symmetry in a sphere	111
(i)	The diffusion equation	111
(ii)	Diffusion through a spherical shell	114
(iii)	Sphere covered by a thin membrane, mass	
	consumption in the interior	115
2.5.5 Tim	e-dependent diffusion processes	117
2.5.5.1	An extended initial distribution (Boltzmann's	
	trick)	117
2.5.5.2	Diffusion from a region with constant	
	concentration	123
2.5.5.3	Duhamel's integral	124
2.5.5.4	An instantaneous surface distribution	127

130

130

133

133

135

137

139

140

2.5.5.5 Green's function

half-space

2.5.6 Molecular description of diffusion

2.5.6.1 Brownian motion

(i) A varying initial distribution in space

(iii) The effect of an impermeable barrier

(iv) The effect of a matter-absorbing wall

(v) A variable flux into one half-space

(ii) Initial uniform distribution in the infinite

x Contents

2.5.6.2	Diffusion from a statistical point of view	143
2.5.6.3	Random walk	145
(i)	The distribution function	146
(ii)	The mean displacement	153
(iii)	The mean displacement in one direction	154
(iv)	The root mean square displacement (the	
	Einstein-Smoluchowski relation)	154
(a	α) Two-dimensional random walk	157
(<i>þ</i>	3) Three-dimensional random walk	159
2.5.6.4	Random walk and Fick's law	161
(i)	Einstein's simplified treatment	161
(ii)	A more exact derivation of Fick's law	164
2.5.6.5	Random walk and the diffusion equation	169
2.5.6.6	Random walk over an energy barrier	175
2.6 Diffusion	and migration superimposed	180
2.6.1 The S	Smoluchowski equation	180
2.6.1.1	An instantaneous plane source in infinite space	182
(i)	The concentration change with time at a fixed	
	point in space	184
(ii)	Driving the swarm towards a reflecting barrier: a	
	case of sedimentation	184
2.6.2 "Ran	ndom walk" considerations	190
2.6.2.1	The flux equation	190
2.6.2.2	Random walk and the diffusion-migration	
	equation	193
2.6.2.3	Migration over an energy barrier	195
	ners' equation	199
2.6.4 Diffu	usion coefficient and mobility	201
2.6.4.1	The Einstein relation	202
	Einstein-Stokes relation	203
	The "driving force" behind the diffusion process	206
	through membranes	208
	neability coefficient	209
2.7.2 Kine	tics of exchange	210
2.7.2.1	Outer concentration kept at zero	211
2.7.2.2	Outer concentration kept constant: cell	
	concentration initially zero	212
2.7.2.3	Both phases comparable in size	213
2.7.3 Com	partment analysis	218

Contents	xi

2.7.3.1 Tran	nsport with passive membrane permeabilities	218
(i) A si	tep change in outer concentration	219
(ii) Out	er concentration grows asymptotically	220
2.7.3.2 One	e-way transport	221
(i) Uni	directional flux	221
(ii) Uni	directional transfer	222
(iii) Pas	sive influx and unidirected efflux	224
2.7.4 Stationar	y diffusion with superimposed migration	224
2.7.4.1 Det	ermination of the flux	225
2.7.4.2 Uni	directional fluxes and flux ratio	228
2.7.4.3 Con	ncentration profile	229
2.8 Convective and	d osmotic water movement through	
membranes		230
2.8.1 Convectiv	ve water movement	231
2.8.2 Osmotic	water movement	233
2.8.2.1 Osn	notic pressure	233
2.8.2.2 Col	ligative properties	235
2.8.2.3 The	underlying mechanism of osmotic water	
n	novement	236
2.8.2.4 The	e equation for the osmotic pressure	237
2.8.2.5 Osn	notic coefficient	242
2.8.2.6 A si	imple dynamic model of osmotic equilibrium	243
2.8.3 The freez	zing-point depression	250
2.8.3.1 The	e freezing-point depression and osmotic	
p	pressure	251
2.8.3.2 Osr	nolarity	252
2.8.3.3 Ref	lection coefficient	254
2.8.4 Water mo	ovement across cell membranes	255
Membrane potential	ls	259
3.1 Introduction		259
3.2 Electric field a	nd potential	260
3.3 Transport of ic	ons in solutions	265
3.3.1 Migratio	n	266
3.3.2 Electrodi	iffusion (Nernst–Planck equations)	271
3.3.2.1 Equ	uivalent forms	272
3.3.2.2 Poi	sson's equation	274
3.3.2.3 Ele	ctroneutrality	276
3.3.2.4 The	e constant field	277
3.4 The equilibriu	m potential	277

xii Contents

3.7.1	riqu	antative description of the origin of the membrane	
	pe	otential across an ion-selective permeable	
	m	nembrane	278
3.4.2	The	Nernst equation	281
3.4	1.2.1	The charge density of the excess charges on the	
		two membrane sides	283
3.4	1.2.2	Derivation of Nernst's equation	283
3.4.3	Esta	blishing the electric contact to the electrolyte	
	SC	olution: electrodes	286
3.4	4.3.1	The galvanic cell	286
	(i)	Half-cells	288
	(ii)	Electrode potentials	289
	(iii)	Standard electrode potentials	294
	(iv)	Non-equivalent electrode current	295
	2 124	Reversibility	298
3.4	4.3.2		299
	(i)	The silver-silver chloride electrode	299
	(ii)	The calomel electrode	301
3.4.4	The	equivalent electric circuit for the ionic-selective	
	m	nembrane	302
3.4	4.4.1	Measurement of the current-voltage	
		characteristic	302
	4.4.2		304
	4.4.3	The equivalent circuit diagram	308
3.4	4.4.4	Membrane conductance and membrane	
		permeability	311
		nan potential	313
3.5.1		litative description of the Donnan distribution	314
3.5.2	-	intitative treatment of the Donnan system	316
	5.2.1	Low polyelectrolyte concentration	320
	5.2.2	High polyelectrolyte concentration	321
		centration and potential profiles	322
	5.3.1	The Poisson–Boltzmann equations	324
3.5			326
	(i)		326
	(ii)		329
	(iii)		331
		A numerical example	333
	5.3.4	The total space charge	335
3.6 Diff	fusion	potentials	336

Contents	xii	i
3.6.1 Qualitative description of the	diffusion potential 336	5
3.6.1.1 Collapse of the Donnan	regime 336	5
3.6.1.2 A binary electrolyte	337	7
3.6.1.3 The salt bridge to elimin	ate the diffusion potential 338	3
3.6.2 Calculation of the diffusion po	otential for a binary	
monovalent electrolyte	339)
3.6.3 Diffusion potential between so	olutions of different	
composition	341	1
3.6.3.1 The Planck regime	342	2
(i) Planck's general relation		
(ii) The electrical equivalen	t for the Planck regime 345	5
(iii) Planck's expression for	the diffusion potential 348	8
3.6.3.2 The Henderson regime	348	8
3.6.3.3 The salt bridge once aga	in 35	1
3.7 Electrodiffusion through membrane		
3.7.1 A single salt	353	3
3.7.1.1 The diffusion potential	354	4
3.7.1.2 The membrane resistance	ee 350	6
3.7.1.3 The potential profile	35	7
3.7.1.4 The equivalent electric of	eircuit 35°	7
3.7.1.5 Electroneutrality	359	9
3.7.2 Ion-selective membranes	360	
3.7.3 The Goldman regime	36.	3
3.7.3.1 Derivation of the Goldm	nan equation 36	5
3.7.3.2 Concentration profiles	379	0
3.7.3.3 Membrane conductance		
permeability	37	
(i) Concentrations equal or	n both sides 37	
(ii) Different surrounding c	oncentrations: $V \approx V_{\rm j}^{\rm (eq)}$ 37-	
(iii) $V \neq V_{\rm j}^{\rm (eq)}$	37	6
3.7.3.4 Total current and memb	rane potential 37	7
3.7.4 The mosaic membrane (the M	Millman equation) 37	9
3.8 The membrane potential of a biolo	gical cell 38	4
3.8.1 Measuring the membrane pot		
3.8.2 The origin of the membrane p	potential 38	8
3.8.3 Membrane potential and ionic		
extracellular medium	39	
3.8.3.1 Sudden changes of both		2
3.8.3.2 Membrane potential wit		2000
in extracellular fluid	in the absence of Cl ⁻ 39	6