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FILTERING COMPLEX TURBULENT SYSTEMS

Many natural phenomena ranging from climate through to biology are described by com-
plex dynamical systems. Getting information about these phenomena involves filtering
noisy data and making predictions based on incomplete information, and often we need
to do this in real time, e.g. for weather forecasting or pollution control. All this is fur-
ther complicated by the sheer number of parameters involved, leading to further problems
associated with the “curse of dimensionality” and the “curse of small ensemble size”.

The authors develop, for the first time in book form, a systematic perspective on all these
issues from the standpoint of applied mathematics. Their approach follows several strands:

e blending classical stability analysis of partial differential equations and their finite
difference approximations;

e extending classical Kalman filters and applying them to stochastic models of turbulence
to deal with large model errors;

e developing test suites of statistically exactly solvable models and new SPEKF algorithms
for filtering slow—fast systems, moist convection, turbulent tracers, and geophysical
turbulent systems.

The book contains enough background material from filtering, turbulence theory, and
numerical analysis to make the presentation self-contained, and is suitable for graduate
courses as well as for researchers in a range of disciplines across science and engineering
where applied mathematics is required to enlighten observations and models.

ANDREW J. MAJDA is the Morse Professor of Arts and Sciences at the Courant
Institute of New York University.

JOHN HARLIM is an Assistant Professor in the Department of Mathematics at North
Carolina State University.



Preface

This book is an outgrowth of lectures by both authors in the graduate course of the first
author at the Courant Institute during spring 2008 and 2010 on the topic of filtering tur-
bulent dynamical systems as well as lectures by the second author at the North Carolina
State University in a graduate course in fall 2009. The material is based on the authors’
joint research as well as collaborations with Marcus Grote and Boris Gershgorin; the
authors thank these colleagues for their explicit and implicit contributions to this mate-
rial. Chapter 1 presents a detailed overview and summary of the viewpoint and material
in the book. This book is designed for applied mathematicians, scientists and engineers,
ranging from first- and second-year graduate students to senior researchers interested in
filtering large-dimensional complex nonlinear systems.

The first author acknowledges the generous support of DARPA through Ben Mann and
ONR through Reza Malek-Madani which funded the research on these topics and helped
make this book a reality.
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1

Introduction and overview: Mathematical strategies
for filtering turbulent systems

Filtering is the process of obtaining the best statistical estimate of a natural system from
partial observations of the true signal from nature. In many contemporary applications
in science and engineering, real-time filtering of a turbulent signal from nature involv-
ing many degrees of freedom is needed to make accurate predictions of the future state.
This is obviously a problem with significant practical impact. Important contemporary
examples involve the real-time filtering and prediction of weather and climate as well
as the spread of hazardous plumes or pollutants. Thus, an important emerging scientific
issue is the real-time filtering through observations of noisy signals for turbulent nonlin-
ear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations
for filtering such systems. From the practical standpoint, the demand for operationally
practical filtering methods escalates as the model resolution is significantly increased. In
the coupled atmosphere—ocean system, the current practical models for prediction of both
weather and climate involve general circulation models where the physical equations for
these extremely complex flows are discretized in space and time and the effects of unre-
solved processes are parametrized according to various recipes; the result of this process
involves a model for the prediction of weather and climate from partial observations of
an extremely unstable, chaotic dynamical system with several billion degrees of freedom.
These problems typically have many spatio-temporal scales, rough turbulent energy spectra
in the solutions near the mesh scale, and a very large-dimensional state space, yet real-time
predictions are needed.

Particle filtering of low-dimensional dynamical systems is an established discipline
(Bain and Crisan, 2009). When the system is low dimensional or when it has a low-
dimensional attractor, Monte Carlo approaches such as the particle filter (Chorin and
Krause, 2004) with its various up-to-date resampling strategies (Del Moral, 1996; Del
Moral and Jacod, 2001; Rossi and Vila, 2006) provide better estimates in the presence of
strong nonlinearity and highly non-Gaussian distributions. However, with the above prac-
tical computational constraint in mind, these accurate nonlinear particle filtering strategies
are not feasible since sampling a high-dimensional variable is computationally impossi-
ble for the foreseeable future. Recent mathematical theory strongly supports this curse of
dimensionality for particle filters (Bengtsson et al., 2008; Bickel et al., 2008). Nevertheless
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some progress in developing particle filtering with small ensemble size for non-Gaussian
turbulent dynamical systems is discussed in Chapter 15. These approaches, including the
new maximum entropy particle filter (MEPF) due to the authors, all make judicious use of
partial marginal distributions to avoid particle collapse. In the second direction, Bayesian
hierarchical modeling (Berliner et al., 2003) and reduced-order filtering strategies (Miller
et al., 1999; Ghil and Malanotte-Rizolli, 1991; Todling and Ghil, 1994; Anderson, 2001,
2003; Chorin and Krause, 2004; Farrell and Ioannou, 2001, 2005; Ott et al., 2004; Hunt
et al., 2007; Harlim and Hunt, 2007b) based on the Kalman filter (Anderson and Moore,
1979; Chui and Chen, 1999; Kaipio and Somersalo, 2005) have been developed with some
success in these extremely complex high-dimensional nonlinear systems. There is an inher-
ently difficult practical issue of small ensemble size in filtering statistical solutions of
these complex problems due to the large computational overload in generating individual
ensemble members through the forward dynamical operator (Haven et al., 2005). Numer-
ous ensemble-based Kalman filters (Evensen, 2003; Bishop et al., 2001; Anderson, 2001;
Szunyogh et al., 2005; Hunt et al., 2007) show promising results in addressing this issue
for synoptic-scale mid-latitude weather dynamics by imposing suitable spatial localization
on the covariance updates; however, all these methods are very sensitive to model resolu-
tion, observation frequency and the nature of the turbulent signals when a practical limited
ensemble size (typically less than 100) is used. They are also less skillful for more complex
phenomena like gravity waves coupled with condensational heating from clouds which are
important for the tropics and severe local weather.

Here is a list of fundamental new difficulties in the real-time filtering of turbulent signals
that need to be addressed as mentioned briefly above.

1(a) Turbulent dynamical systems to generate the true signal. The true signal from
nature arises from a turbulent nonlinear dynamical system with extremely complex
noisy spatio-temporal signals which have significant amplitude over many spatial
scales.

1(b) Model errors. A major difficulty in accurate filtering of noisy turbulent signals with
many degrees of freedom is model error; the fact that the true signal from nature is
processed for filtering and prediction through an imperfect model where by practical
necessity, important physical processes are parametrized due to inadequate numerical
resolution or incomplete physical understanding. The model errors of inadequate res-
olution often lead to rough turbulent energy spectra for the truth signal to be filtered
on the order of the mesh scale for the dynamical system model used for filtering.

1(c) Curse of ensemble size. For forward models for filtering, the state space dimension
is typically large, of order 10*~108, for these turbulent dynamical systems, so gen-
erating an ensemble size with such a direct approach of order 50-100 members is
typically all that is available for real-time filtering.

1(d) Sparse, noisy, spatio-temporal observations for only a partial subset of the vari-
ables. In systems with multiple spatio-temporal scales, the sparse observations of
the truth signal might automatically couple many spatial scales, as shown below
in Chapter 7 or in Harlim and Majda (2008b), while the observation of a partial
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subset of variables might mix together temporal slow and fast components of the
system (Gershgorin and Majda, 2008, 2010) as discussed in Chapter 10. For exam-
ple, observations of pressure or temperature in the atmosphere mix slow vortical and
fast gravity wave processes.

This book is an introduction to filtering with an emphasis on the central new issues in
1(a)—(d) for filtering turbulent dynamical systems through the “modus operandi” of the
modern applied mathematics paradigm (Majda, 2000a) where rigorous mathematical the-
ory, asymptotic and qualitative models, and novel numerical algorithms are all blended
together interactively to give insight into central “cutting edge” practical science prob-
lems. In the last several years, the authors have utilized the synergy of modern applied
mathematics to address the following:

2(a) How to develop simple off-line mathematical test criteria as guidelines for filtering
extremely stiff multiple space—time scale problems that often arise in filtering tur-
bulent signals through plentiful and sparse observations? (Majda and Grote, 2007;
Castronovo et al., 2008; Grote and Majda, 2006; Harlim and Majda, 2008b)

2(b) For turbulent signals from nature with many scales, even with mesh refinement, the
model has inaccuracies from parametrization, under-resolution, etc. Can judicious
model errors help filtering and simultaneously overcome the curse of dimensionality?
(Castronovo et al., 2008; Harlim and Majda, 2008a,b, 2010a)

2(c) Can new computational strategies based on stochastic parametrization algorithms
be developed to overcome the curse of dimensionality, to reduce model error and
improve the filtering as well as the prediction skill? (Gershgorin et al., 2010a,b;
Harlim and Majda, 2010b)

2(d) Can exactly solvable models be developed to elucidate the central issues in 1(d) for
turbulent signals, to develop unambiguous insight into model errors and to lead to
efficient new computational algorithms? (Gershgorin and Majda, 2008, 2010)

The main goals of this book are the following: first, to introduce the reader to filtering
from this viewpoint in an elementary fashion where no prior background on these topics
is assumed (Chapters 2-4); secondly, to describe in detail the recent and ongoing devel-
opments, emphasizing the remarkable new mathematical and physical phenomena that
emerge from the modern applied mathematics modus operandi applied to filtering turbulent
dynamical systems. Next, in this introductory chapter, we provide an overview of turbulent
dynamical systems and basic filtering followed by an overview of the basic applied mathe-
matics motivation which leads to the new developments and viewpoint emphasized in this
book.

1.1 Turbulent dynamical systems and basic filtering

The large-dimensional turbulent dynamical systems which define the true signal from
nature to be filtered in the class of problems studied here have a fundamentally different
statistical character than in more familiar low-dimensional chaotic dynamical systems. The
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most well-known low-dimensional chaotic dynamical system is Lorenz’s tamous three-
equation model (Lorenz, 1963) which is weakly mixing with one unstable direction on
an attractor with high symmetry. In contrast, realistic turbulent dynamical systems have a
large phase space dimension, a large dimensional unstable manifold on the attractor, and
are strongly mixing with exponential decay of correlations. The simplest prototype exam-
ple of a turbulent dynamical system is also due to Lorenz and is called the L-96 model
(Lorenz, 1996; Lorenz and Emanuel, 1998). It is widely used as a test model for algorithms
for prediction, filtering and low-frequency climate response (Majda et al., 2005; Majda and
Wang, 2006). The L-96 model is a discrete periodic model given by the following system

duj .

7=(uj+|—uj_2)uj_|—uj+F. j=0,....J—1, (1.1)
with J = 40 and with F the forcing parameter. The model is designed to mimic baroclinic
turbulence in the mid-latitude atmosphere with the effects of energy-conserving nonlinear
advection and dissipation represented by the first two terms in (1.1). For sufficiently strong
forcing values such as F = 6, 8, 16, the L-96 model is a prototype turbulent dynamical
system which exhibits features of weakly chaotic turbulence (F = 6), strongly chaotic
turbulence (F = 8), and strong turbulence (F = 16) (Majda et al., 2005). In order to
quantify and compare the different types of turbulent chaotic dynamics in the L-96 model
as F is varied, it is convenient to rescale the system to have unit energy for statistical
fluctuations around the constant mean statistical state, u (Majda et al., 2005); thus, the
transformation u; = u + E,',/zﬁj.t = fE;'/z is utilized where E, represents the energy
fluctuations (Majda et al., 2005). After this normalization, the mean state becomes zero
and the energy fluctuations are unity for all values of F. The dynamical equation in terms
of the new variables, i;, becomes

duj
di
Table 1.1 lists, in the non-dimensional coordinates, the leading Lyapunov exponent, A, the

dimension of the unstable manifold, N, the sum of the positive Lyapunov exponents (the
KS entropy) and the correlation time, Tcorr, of any u; variable with itself as F is varied

(@41 — @-2)ij—1 + Ep (@1 — #j-2)a — iij) + E;(F ). (1.2)

Table 1.1 Dynamical properties of the L-96 model for regimes with
F = 6,8, 16. x| denotes the largest Lyapunov exponent, N* denotes
the dimension of the expanding subspace of the attractor, K S denotes
the Kolmogorov—Sinai entropy and 7o denotes the decorrelation
time of the energy-rescaled time correlation function.

F A Nt KS Teorr
Weakly chaotic 6 1.02 12 5.547 8.23
Strongly chaotic 8 1.74 13 10.94 6.704

Fully turbulent 16 3.945 16 27.94 5.594
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Figure 1.1 Space-time diagrams of numerical solutions of the L-96 model for the weakly chaotic
(F = 6), strongly chaotic (F = 8) and fully turbulent (F = 16) regimes.

through F = 6, 8, 16. Note that A;, N and KS increase significantly as F increases while
Tcorr decreases in these non-dimensional units; furthermore, the weakly turbulent case with
F = 6 already has a 12-dimensional unstable manifold in the 40-dimensional phase space.
Snapshots of the time series for (1.1) with F = 6, 8, 16, as depicted in Fig. 1.1, qualita-
tively confirm the above quantitative intuition with weakly turbulent patterns for F = 6,
strongly chaotic wave turbulence for F = 8, and fully developed wave turbulence for
F = 16. It is worth remarking here that smaller values of F around F = 4 exhibit the
more familiar low-dimensional weakly chaotic behavior associated with the transition to
turbulence.

In regimes to realistically mimic properties of nature, virtually all atmosphere, ocean
and climate models with sufficiently high resolution are turbulent dynamical systems with
features as described above. The simplest paradigm model of this type is the two-layer
quasi-geostrophic (QG) model in doubly periodic geometry that is externally forced by a
mean vertical shear (Smith ez al., 2002), which has baroclinic instability (Salmon, 1998);
the properties of the turbulent cascade have been extensively discussed in this setting, e.g.
see Salmon (1998) and citations in Smith ef al. (2002). The governing equations for the
two-layer QG model with a flat bottom, rigid lid and equal-depth layers H can be written as

0 aq
_aqn +J ¢1,41)+U——+(,3+kdU)£+vV8q1 =0,
(1.3)
8 a WZ 2 8
—at +J (Y2, q2) — Ua—+(ﬁ kdU)—+KV Y2 +vVigy =0,

where subscript 1 denotes the top layer and 2 the bottom layer; v is the perturbed stream
function; J (¥, ) = ¥xqy — Vyqx is the Jacobian term representing nonlinear advection;
U is the zonal mean shear; B is the meridional gradient of the Coriolis parameter; ¢ is the
perturbed quasi-geostropic potential vorticity, defined as follows

k2
qi =ﬂy+v2w1+—§(w3_i—wi), i=1,2, (1.4)
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where kg = \/g/ L4 is the wavenumber corresponding to the Rossby radius Ly; « is the
Ekman bottom drag coefficient; and v is the hyperviscosity coefficient. Note that Eqns (1.3)
are the prognostic equations for perturbations around a uniform shear with stream function
W, = —Uy, W, = Uy as the background state, and the hyperviscosity term, vV3¢, is
added to filter out the energy buildup on the smaller scales.

This is the simplest climate model for the poleward transport of heat in the atmosphere
or ocean and with a modest resolution of 128 x 128 x 2 grid points has a phase space
of more than 30,000 variables. Again for modeling the atmosphere and ocean, this model
in the appropriate parameter regimes is a strongly turbulent dynamical system with strong
cascades of energy (Salmon, 1998; Smith et al., 2002; Kleeman and Majda, 2005); it has
been utilized recently as a test model for algorithms for filtering sparsely observed turbulent
signals in the atmosphere and ocean (Harlim and Majda, 2010b).

1.1.1 Basic filtering

We assume that observations are made at uniform discrete times, mAt¢, with m =
1,2, 3, ... For example, in global weather prediction models, the observations are given
as inputs in the model every six hours and for large-dimensional turbulent dynamical sys-
tems, it is a challenge to implement continuous observations, practically. As depicted in
Fig. 1.2, filtering is a two-step process involving statistical prediction of a probability dis-
tribution for the state variable u through a forward operator on the time interval between
observations followed by an analysis step at the next observation time which corrects this
probability distribution on the basis of the statistical input of noisy observations of the
system. In the present applications, the forward operator is a large-dimensional dynamical
system perhaps with noise written in the Itd sense as

‘:1—': = F(u,t) 4o, )W(1) (1.5)

foru € RV, where o is an N x K noise matrix and W € RX is K -dimensional white noise.
The Fokker—Planck equation for the probability density, p(u, ), associated with (1.5) is

1. Forecast (prediction) 2. Analysis (correction)

Ups 1, - (prior) Up. 4, - (prior)

Up, . (posterior)
Un., 1. + (posterior)

true signal I true signal

observation (V. 1) observation (Vy,, 1)

Im llrm-1 tm tm+1

Figure 1.2 Filtering: Two-step predictor—corrector method.
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1
pr=—Vy-(F(u,t)p) + Evu -Vu(Qp) = Lgpp (1.6)
Ptli=1, = po(u)

with Q(1) = oo . For simplicity in exposition, here and throughout the remainder of the
book we assume M linear observations, v,, € RM, of the true signal from nature given by

Um = Gu(mAt) +a65, m=1,2,... (1.7)

where G maps R" into RM while the observational noise, 5% € R is assumed to be a
zero-mean Gaussian random variable with M x M covariance matrix,

R’ =3/, ® Go)T). (1.8)
Gaussian random variables are uniquely determined by their mean and covariance; here
and below, we utilize the standard notation \/ ()—( , R) to denote a vector Gaussian random
variable with mean X and covariance matrix R. With these preliminaries, we describe the
two-step filtering algorithm with the dynamics in (1.5), (1.6) and the noisy observations
in (1.7), (1.8). Start at time step m At with a posterior probability distribution, p,, +(u),
which takes into account the observations in (1.7) at time mAt. Calculate a prediction or

forecast probability distribution, p,,4+1,—(u), by using (1.6), in other words, let p be the
solution of the Fokker—Planck equation,

pr = Lepp, mAt <t < (m+ 1)At (1.9)
Pli=mar = pm+ ).
Define py,+1,—(u), the prior probability distribution before taking observations at time
m + 1 into account, by
Pmt1.— () = p(u, (m + 1)Ar) (1.10)

with p determined by the forward dynamics in (1.9). Next, the analysis step at time (m + 1)
At which corrects this forecast and takes the observations into account is implemented by
using Bayes’ theorem

Pmi 1,4+ W PWmt1) = Pt U[Vn41) p(Umt1)
= P41, V) = Pt W1 [W) P, — (). (1.11)
With Bayes’ formula in (1.11), we calculate the posterior distribution

Pm+1 (U1 [t6) pmt1,— (1)
S Pyt 1 [0) pr,— (w)du’

The two steps described in (1.9), (1.10), (1.12) define the basic nonlinear filtering
algorithm which forms the theoretical basis for practical design of algorithms for filter-
ing turbulent dynamical systems (Jazwinski, 1970; Bain and Crisan, 2009). While this
is conceptually clear, practical implementation of (1.9), (1.10), (1.12), directly in turbu-
lent dynamical systems, is impossible due to large state space, N > 1, as well as the
fundamental difficulties elucidated in 1(a)—(d) in the introduction.

(1.12)

Pmt1,+W) = ppy1 U|vyyr) =
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The most important and famous example of filtering is the Kalman filter where the
analysis step in (1.5) is associated with linear dynamics which can be integrated between
observation time steps m At and (m + 1) At to yield the forward operator

Umy1 = Fupm + ﬁn+l + Om+1- (1.13)

Here F is the N x N system operator matrix and o, is the system noise assumed to be
zero-mean and Gaussian with N x N covariance matrix

R=(om®acl), Vm, (1.14)

while f,, is a deterministic forcing. Next, we present the simplified Kalman filter equa-
tions for the linear case. First assume the initial probability density po(u) is Gaussian, i.e.
po(u) = N (g, R,) and assume by recursion that the posterior probability distribution,
Pm.+W) = N(tty +, Ry +), is also Gaussian. By using the linear dynamics in (1.13), the
forecast or prediction distribution at time (m + 1) At is also Gaussian,

pm+l.—(u) =N(ﬁm+|.-- Rm+l.—)
mtl,— = Fiim 4+ + fru1 (1.15)
Rnst.— = FRy +FT +R.

With the assumptions in (1.7), (1.8) and (1.13), (1.15), the analysis step in (1.12) becomes
an explicit regression procedure for Gaussian random variables (Chui and Chen, 1999;
Anderson and Moore, 1979) so that the posterior distribution, p,,+1 +(u), is also Gaussian
yielding the Kalman filter

Pmi1,+W) = N(lms1,4, Rmy1.4)
Uil + =T — Kms1G)itmy1,— + Kinp1Um41 (1.16)
Rmt1,+ =T — Kn+1G)Rm+1,—
Kmi1 = Rmi1.—-GT(GRyuy1.-GT + R*)\.

The N x M matrix, K,,+1, is the Kalman gain matrix. Note that the posterior mean after
processing the observations is a weighted sum of the forecast and analysis contributions
through the Kalman gain matrix and also that the observations reduce the covariance,
Rpmt1,+ < Rpm+1,—. In this Gaussian case with linear observations, the analysis step going
from (1.15) to (1.16) is a standard linear least-squares regression. An excellent treatment
of this can be found in chapter 3 of Kaipio and Somersalo (2005). There is a huge litera-
ture on Kalman filtering; two excellent basic texts are Chui and Chen (1999) and Anderson
and Moore (1979) where more details and references can be found. Our intention in the
introductory parts in this book in Chapters 2 and 3 is not to repeat the well-known mate-
rial in (1.15), (1.16) in detail; instead we introduce this elementary material in a fashion
to set the stage for the mathematical guidelines developed in Part II (Chapters 5-8) and
the applications to filtering turbulent nonlinear dynamical systems presented in Part III
(Chapters 9-15).
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Naively, the reader might expect that everything is known about filtering linear sys-
tems; however, when the linear system is high dimensional, i.e. N > 1, the same issues
elucidated in 1(a)—(d) occur for linear systems in a more transparent fashion. This is the
viewpoint emphasized and developed in Part II of the book (Chapters 5-8) which is moti-
vated next. For linear systems without model errors, the recursive Kalman filter is an
optimal estimator but the recursive nonlinear filter in (1.7)—(1.12) may not be an optimal
estimator for the nonlinear stochastic dynamical system without model error in (1.5).

1.2 Mathematical guidelines for filtering turbulent dynamical systems

How can useful mathematical guidelines be developed in order to elucidate and ameliorate
the central new issues in 1(a)—(d) from the introduction for turbulent dynamical systems?
This is the topic of this section. Of course, to be useful, such mathematical guidelines
have to be general yet still involve simplified models with analytical tractability. Such cri-
teria have been developed recently by Majda and Grote (2007); Castronovo et al. (2008)
and Harlim and Majda (2008b) through the modern applied mathematics paradigm and
the goal here is to outline this development and discuss some of the remarkable phenom-
ena which occur. The starting point for this development for filtering turbulent dynamical
systems involves the symbiotic interaction of three different disciplines in applied mathe-
matics/physics, as depicted in Fig. 1.3: stochastic modeling of turbulent signals, numerical
analysis of PDEs and classical filtering theory outlined in (1.13)—(1.16) of Section 1.1.
Here is the motivation from the three legs of the triangle.

First, the simplest stochastic models for modeling turbulent fluctuations consist of
replacing the nonlinear interaction at these modes by additional dissipation and white noise

Modeling turbulent signals Filtering

Extended Kalman filter
Stochastic Langevin models <:>

Classical stability criteria:
Complex nonlinear

dynamical systems Observability
Controllability

Numerical analysis

Classical von Neumann
stability analysis for
frozen coefficient linear PDEs
Stiff ODEs

Figure 1.3 Modern applied mathematics paradigm for filtering.



