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Preface

One of the remarkable features of modern science and technology is the mutual penetration
and promotion between life science and engineering science. The rapid development in the
field of computational intelligence, which includes neural networks, fuzzy logic, natural
computation, evolutionary computation, and so on, also reflects such a feature. The research
in the field of computational intelligence and recognition aims to achieve human intelligence
by intelligently handling nonlinear real-world information, including image, video, voice,
touch, etc. Due to its importance in information technology, computational intelligence has
attracted increasing attention, and is also listed as one of the five key directions by the National
Natural Science Foundation Committee of China.

According to fossil records, life has preceded the singled celled organism, and undergone a
roadmap of evolution from a low level to a high level, and from the simple to the complex.
Human beings, superior living organisms with thought and intelligence, are a spectacular
success of evolution. Human beings can not only adapt to their environment, but also improve
their adaptability via learning, imitation, and creation. Since the last century, researchers have
extended the areas they study to include nature and human beings. Researchers have studied
the evolutionary process of human beings itself, and extracted it as an optimization process.
The classic example being evolutionary algorithms (EAs).

EAs are a kind of stochastic optimization approach, inspired by theories of biological evolution.
Traditionally, EAs have been categorized into four subfields: Genetic Algorithms (GAs),
Evolution Strategies (ESs), Evolutionary Programming (EP), and Genetic Programming (GP).
Nowadays, the boundaries between these subfields are more fluid and the methods are often
grouped together using the term Evolutionary Algorithms. This class of method does not
require derivatives of the functions defining the problem and it is relatively robust and flexible
for solving nonlinear optimization problems, due to the stochastic search operators involved
in the algorithmic definition.

Although simplistic from a biologist’s viewpoint, EAs are sufficiently complex to provide
robust and powerful adaptive search mechanisms. Today, Evolutionary Computation (EC),
the computation model based on EAs, is a thriving field, and EAs have been successfully
applied to a broad variety of problems in an extremely diverse array of fields, such as acoustics,



aerospace engineering, astronomy and astrophysics, chemistry, electrical engineering, financial
markets, game playing, geophysics, materials engineering, mathematics and algorithmics,
molecular biology, pattern recognition and data mining, robotics, routing and scheduling.

Although EAs have many advantages over traditional optimization approaches and have been
successfully applied to many fields, they still have weaknesses. Their main disadvantages are
the ability to be trapped in local optima and have a high computational cost, thus traditional
EAs’ ability in solving large-scale problems is weak. It is worth stepping back and exploring
how to best learn from nature and how to incorporate our existing knowledge of artificial
intelligence into EC.

As a new promising branch of EC, coevolutionary computation has attracted increasing
attention recently. The further development of this branch will require further efforts from
various researchers. This book studies the background and foundation of coEC in depth, and
introduces organizational coevolutionary algorithms and multiagent evolutionary algorithms.
We introduce the dynamics of coevolutionary systems, prove the convergence of algorithms,
and analyze the computational complexity of algorithms. This book focuses on both the
theoretical foundation and practical applications, and not only provides new coevolutionary
algorithms, but also provides new ideas and methods for further developing computational
intelligence.

The whole book is divided into 10 chapters, which include the introduction on EC, coEC,
complex adaptive systems, and multiagent systems (Chapter 1), organizational coevolutionary
algorithms and their applications on large-scale classification, satisfiability problems, numerical
optimization, and VLSI Floorplan problems (Chapters 2, 3, 4, 5, 6), multiagent evolutionary
algorithms and their applications to high-dimensional numerical optimization, combinatorial
optimization problems, and constraint satisfaction problems (Chapters 7, 8, 9, 10).

The work in this book was supported by the Fundamental Research Funds for the Central
Universities, the National Natural Science Foundation of China (Nos 61103119, 61072106,
61001202, 61003199 and 60970067), the Program for Cheung Kong Scholars and Innovative
Research Team in University of China (No. IRT1170), the Fund for Foreign Scholars in
University Research and Teaching Programs of China (“111” Project, No. B07048), and the
European Union Seventh Framework Programme (No. 247619). We would like to thank those
people who always support our work. They are Prof. Zheng Bo (Academician of the Chinese
Academy of Sciences, Xidian University, China), Prof. Guoliang Chen (Academician of the
Chinese Academy of Sciences, University of Science and Technology of China), Prof. Xin
Yao (University of Birmingham, UK), Prof. Qingfu Zhang (University of Essex, UK), etc.
We would also like to thank the editors at Science Press, China and WIT Press, UK for their
hard work.

Licheng Jiao, Jing Liu, Weicai Zhong, April, 2012
Xidian University, Xi’an, China
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Chapter 1
Introduction

Evolutionary computation (EC) and multiagent systems (MAS), as new branches in the field
of artificial intelligence, have attracted increasing attention. This book introduces the
authors’ recent work in these two fields. Therefore, this first chapter is devoted to the related
background in the fields of EC and MAS.

1.1 Evolutionary computation

The origin of EC can be traced back to the late 1950s, and the influencing works include
Bremermann [1], Friedberg [2], [3], Box [4], and others. Although EC remained relatively
unknown to the broader scientific community for almost three decades, which was largely
due to the lack of available powerful computer platforms at that time and some
methodological shortcomings of those early approaches [5], it has started to receive
significant attention since the 1980s, which benefited from the fundamental work of Holland
[6], Rechenberg [7], Schwefel [8], and Fogel [9] during the 1970s.

1.1.1 Structure of evolutionary algorithms

Evolutionary algorithms (EAs) [5], [10]—[13] mimic the process of natural evolution, the driving
process for the emergence of complex, and well-adapted organic structures. EAs maintain a
population of individuals to produce approximately optimal solutions to the problem. Each
individual in the population is evaluated, receiving a measure of its fitness in the environment.
At each generation, they involve a competitive selection that weeds out poor individuals,
thus exploiting the available fitness information. The individuals with high fitness are perturbed
by using crossover and mutation operators, providing general heuristics for exploration.
The non-deterministic nature of reproduction leads to a permanent production of novel
genetic information and therefore to the creation of differing offspring. This neo-Darwinian
model of organic evolution is reflected by the structure of the following general EA [5].

Algorithm 1.1: General structure of EAs

t—20;
Initialize P(t);
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Evaluate P(t) ;
While not terminate do
P (t) <« Variation [P(t)];
Evaluate [P (t)];
P(t+ 1) « Select[P(t) UQ];
t— t+1;
End.

In this algorithm, P(¢) denotes a population of n individuals at generation ¢. Q is a special
set of individuals that might be considered for selection, e.g., Q = P(1) (but Q= is
possible as well). An offstring population P/(z) of size m is generated by means of variation
operators such as recombination and/or mutation from the population P(r). The offstring
individuals are then evaluated by calculating the objective function values for teaching of the
solutions represented by individuals in P/(r), and a selection based on the fitness values is
performed to drive the process toward better solutions. It should be noted that m =1 is
possible, thus including the so-called steady-state selection schemes [14], [15] if used in
combination with Q = P(). Furthermore, by choosing | = m = n an arbitrary value of the
generation gap [16] is adjustable, such that the transition between strictly generational and
steady-state variants of the algorithm is also taken into account by the formulation offered
here. It should also be noted that m > n, i.e., a reproduction surplus, is the normal case in
nature.

Although simplistic from a biologist’s viewpoint, EAs are sufficiently complex to
provide robust and powerful adaptive search mechanisms. Today, EAs have been
successfully applied to a broad variety of problems in an extremely diverse array of fields,
such as acoustics, aerospace engineering, astronomy and astrophysics, chemistry, electrical
engineering, financial markets, game playing, geophysics, materials engineering,
mathematics and algorithmics, molecular biology, pattern recognition and data mining,
robotics, routing, and scheduling.

1.1.2 Branches of evolutionary algorithms

The majority of current implementations of EAs descend from three strongly related but
independently developed approaches: genetic algorithms (GAs), evolutionary programming,
and evolution strategies, and one based on GAs: genetic programming.

GA:s, introduced by Holland [6], [17], [18], and subsequently studied by De Jong [19]—
[22], Goldberg [23]—[27], and others, have been originally proposed as a general model of
adaptive processes, but by far the largest application of the techniques in the domain of
optimization [21], [22].

Evolutionary programming, introduced by Fogel [9], [28] and extended by Burgin [29],
[30], Atmar [31], Fogel [32]—[34], and others, was originally offered as an attempt to create
artificial intelligence. The approach was to evolve finite-state machines (FSM) to predict
events on the basis of former observations. An FSM is an abstract machine which transforms
a sequence of input symbols into a sequence of output symbols. The transformation depends
on a finite set of states and a finite set of state transition rules. The performance of an FSM
with respect to its environment might then be measured on the basis of the machine’s
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prediction capability, i.e., by comparing each output symbol with the next input symbol and
measuring the worth of a prediction by some payoff function.

Evolution strategies, as developed by Rechenberg [35], [36] and Schwefel [37], [38], and
extended by Herdy [39], Kursawe [40], Ostermeier [41], [42], Rudolph [43], Schwefel [44],
and others, were initially designed with the goal of solving difficult discrete and continuous,
mainly experimental [45], parameter optimization problems.

Genetic programming applies evolutionary search to the space of tree structures which
may be interpreted as computer programs in a language suitable to modification by mutation
and recombination. The dominant approach to genetic programming uses (a subset of) LISP
programs (S expressions) as genotype space [46], [47], but other programming languages
including machine code are also used (see, e.g., [48-50]).

1.1.3 Evolutionary computation and complex adaptive systems

Although EAs have many advantages over traditional optimization approaches and have
been successfully applied to many fields; they still have weaknesses. Their main
disadvantages are that they are easy to be trapped in local optima and have a high
computational cost, thus traditional EAs’ ability in solving large-scale problems is weak.

The world is replete with complex systems. They range from natural systems, such as the
biosphere and climate, to human systems, such as communications, transport, and global
financial markets. Understanding and managing all these systems is one of the most pressing
problems of our time. Holland [51], [52] is the first to systematically and rigorously describe
and define adaptive process (adaptation) from biology to investigate the complex phenomena
generated by complex natural and artificial systems, more precisely, complex adaptive
systems (CASs), which are a collective designation for nonlinear systems defined by the
interaction of large number of adaptive agents. In fact, GAs are one realization of CASs.
Thus, the theoretical framework for adaptation presented in [51] can be a theoretical footing
of GAs, and even EAs.

In CAS, the basic units are adaptive agents with goals and learning capabilities and the
entire system is built on the interactions among such agents, environment, etc. Holland’s
formal framework of adaptation contains seven central components, which are listed in
Table 1.1. In addition, an adaptive system can be expressed as a four-tuple (A, €1, I, 7). Since
the adaptive plan 7 initially has incomplete information about which structure is the most
suitable one, to reduce this uncertainty, the plan 7 must test the performance of different
structures in the environment. When the plan 7 tries a structure A(f) € A at time ¢, the
particular environment E € & confronting the adaptive system signals a response I(f) € 1.
The performance or payoff ug(A()), given by the function g, is generally an important part
of the information /(). When a plan receives only information about payoff, it is called as
payoff-only plan. Once /(r) and A(z) are given, the plan 7 determines operator w, € (), and
hence A(r+ 1) by drawing a random sample from A(f) according to the distribution
determined by w;,.

EAs are actually one kind of the adaptive plans. However, compared with the above
original framework of adaptation, we think the traditional EAs are weak in the following
three aspects.
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Table 1.1: Seven central components in Holland’s formal framework of adaptation

The environment of the system undergoing adaptation.

The measure of the performance of different structures in the environment.

The set of attainable structures and the domain of action of the adaptive plan.

o[s]x [=

The set of operators for modifying structures with w € () being a function mapping
A into some set of probability distributions over A.

N~

The set of possible inputs to the system from environment.

<9

The adaptive plan on the basis of the input / and structure A at time ¢ to determine
which operator is to be applied at time .

X

The criterion for comparing the efficiency of different plans.

)]

@

3)

The adaptiveness of the plan 7 generating and testing different structures in different
environments is lost to a large extent. In fact, the operator w, is determined on the basis of
the information /(r) and A(z) in Holland’s original framework; however, Holland simply
used a fixed operator sequence to generate new structures in the next trial in late
reproductive plan. Moreover, nearly all following researchers in GAs, even in EAs,
follow this pattern or use equivalent ways. Despite the fact that some researchers have
proposed some ‘“adaptive” methods to dynamically tune the parameters of operators
during the evolutionary process, there is still a considerable distance to the
“adaptiveness” of the adaptive plan given in the original framework of adaptation.

A number of operators have been proposed, but little work has been done to select an
appropriate set of them according to a specific task. Previous work has shown that no
single operator can perform well and uniformly outperform other operators over all
search and learning tasks. This has been confirmed by the “no free lunch theorems” [53].
Thus, it is necessary to select an appropriate set of operators (including the ranges of
corresponding parameters) based on the characteristics of the problems for EAs during
the evolutionary process. Accordingly, it is also necessary to choose proper
representations of solutions among a variety of representations available.

Available EAs have not accumulated and made use of their experiences in multiple
applications. Users would expect to choose an appropriate EA according to the problems
that they are going to perform since they often lack not only the expertise necessary to
select a suitable algorithm, but also the availability of many models to proceed on a trial-
and-error basis. An inappropriate selection of algorithm will result in slow convergence,
or even produce a suboptimal solution due to local optima in the complex problem. In
addition, users want to profit from repetitive use of previous experiences over similar
tasks and problems, and do not need to start from scratch on new tasks.

To summarize, traditional EAs can be viewed as one realization of CAS but ignore

individuals’ learning capabilities. On the other hand, some researchers had also pointed out
that Holland’s original vision of CAS was more like an agent-based system than a typically
centralized EAs used today [54].
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1.2 Multiagent systems

The study of MAS began in the field of distributed artificial intelligence about 30 years ago
and focuses on systems in which many intelligent agents interact with each other. Nowadays,
these systems are not simply a research topic but are also becoming an important subject of
academic teaching and industrial and commercial application.

MAS researchers develop communication languages, interaction protocols, and agent
architectures that facilitate the development of MASs. For example, an MAS researcher can
tell you how to program each ant in a colony in order to get them all to bring food to the nest
in the most efficient manner, or how to set up rules so that a group of selfish agents will work
together to accomplish a given task. MAS researchers draw on ideas from many disciplines
outside of artificial intelligence, including biology, sociology, economics, organization and
management science, complex systems, and philosophy.

1.2.1 Agents

The agents are considered to be autonomous entities, such as software programs or robots.
Their interactions can be either cooperative or selfish. That is, the agents can share a common
goal (e.g., an ant colony), or they can pursue their own interests (as in the free market
economy). In fact, the notion of agents should be taken in a broad sense, encompassing a
wide spectrum of computational entities that can sense their local task conditions and
accordingly make decision on how to react to the sensed conditions by performing certain
behaviors in the task environments.
Wooldridge and Jennings define the agents as follows [55].

Definition 1.1:  An agent is a computer system that is situated in some environment, and is
capable of autonomous action in this environment in order to meet its design objectives.

This definition does not say anything about what type of environment an agent occupies.
Thus, agents can occupy many different types of environment. Figure 1.1 gives an abstract,
top-level view of an agent [56]. In this diagram, we can see the action output generated by the
agent in order to affect its environment. In most domains of reasonable complexity, an agent
will not have complete control over its environment. It will have at best partial control, in that
it can influence it. From the point of view of the agent, this means that the same action
performed twice in apparently identical circumstances might appear to have entirely
different effects, and in particular, it may fail to have the desired effect. Thus, agents in all
but the most trivial of environments must be prepared for the possibility of failure. We can
sum this situation up formally by saying that the environments are non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of possible
actions represents the agent’s effectoric capability: its ability of modify its environments.
Note that not all actions can be performed in all situations. Actions therefore have
preconditions associated with them, which define the possible situations in which they can be
applied.
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Sensor input Action output

ENVIRONMENT

Figure 1.1: An agent in its environment. The agent takes sensory input from the
environment, and produces as output actions that affect it. The interaction is
usually an ongoing, non-terminating one.

The key problem faced by an agent is deciding which of its actions it should perform
in order to best satisfy its design objectives. Agent architectures are really software
architectures for decision-making systems that are embedded in an environment. The
complexity of the decision-making process can be affected by a number of different
environmental properties.

An intelligent agent is one that is capable of taking a flexible autonomous action in order
to meet its design objectives, where flexibility means three things [55]:

— Reactivity: Intelligent agents are able to perceive their environment, and respond in a
timely fashion to the changes that occur in it, in order to satisfy their design objectives.

— Proactiveness: Intelligent agents are able to exhibit goal-directed behavior by taking the
initiative, in order to satisfy their design objectives.

— Social ability: Intelligent agents are capable of interacting with other agents (and possibly
humans), in order to satisfy their design objectives.

1.2.2 MAS

Obviously, an MAS is a system composed of a set of agents. However, compared with a
single agent, the characteristics of MASs are that (1) each agent has incomplete information
or capabilities for solving the problem and, thus, has a limited viewpoint; (2) there is no
system global control; (3) data are decentralized; and (4) computation is asynchronous.
With the characteristics of being autonomous, adaptive, robust, and easy to implement,
agent-based approaches have found many potential applications in dealing with tasks that are
less-structured or ill-defined. In such tasks, complete mathematical or computational
solutions may be either unavailable or too expensive to use. Regardless of their domains of
application, agents often have one thing in common, namely, they locally interact with their
task environments, computational or physical. Responding to different local constraints
received from their task environments, the agents can select and exhibit different behavioral
patterns. In the case of optimization or search, the behavioral patterns of the agents may be
reflected in their decisions on in what direction and how much localized search is necessary.
The behavioral patterns of the agents may be predefined and activated whenever certain
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conditions are satisfied during agent—environment interaction, or dynamically acquired
based on some embedded learning mechanisms.

Autonomous agents are often developed to solve specific tasks in a distributed fashion,
involving multiple agents of different capabilities. These agents will coordinate, cooperate,
and sometimes compete among themselves in order to most effectively accomplish a given
task. Singh [57] proposed a theoretical framework for modeling the intensions, know-how,
and communications of agents in an MAS. Barbuceanu and Fox [58] demonstrated how
communicative actions, conversations, and a decision theory can be integrated in order to
achieve multiagent coordination.

The main application of MAS at the moment can be listed as follows:

— Problem solving: As an alternative to centralized problem solving, either because
problems are themselves distributed, or because the distribution of problem solving
between different agents reveals itself to be more efficient way to organize the problem
solving — it can be flexible and allow failures in the system — or because, in some cases, it
is the only way to solve the problem.

— Multiagent simulation: Simulation is widely used to enhance knowledge in biology or in
social science and MAS gives us the possibility to make artificial universes that are small
laboratories for the testing of theories about local behaviors. Examples include Simdelta
(Cambier and Bousquet) and SimPop (Bura).

— Construction of synthetic worlds: These artificial universes can be used to describe
specific interaction mechanisms and analyze their impact at a global level in the system.
The entities that are represented are usually called animats, since they are mainly inspired
by animal behaviors (hunting, searching, or gathering habits). The aim of this research is
to have societies of agents that are very flexible and can adapt even in cases of individual
failure. (For example, when robots are sent on an expedition, they are required to be very
independent of the instructions they could receive).

— Collective robotics: Defining the robots as an MAS where each subsystem has a specific
goal and deals with that goal only. Once all the small tasks are accomplished the big task is
also accomplished. MAS approaches can also be used in the coordination of different
mobile robots in a common space.

— Kenetic program design: MAS can also be seen as a very efficient modular way to
program.
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