Enterprise Cloud Computing Technology, Architecture, Applications

Gautam Shroff

MBRIDGE

ENTERPRISE CLOUD COMPUTING

TECHNOLOGY, ARCHITECTURE, APPLICATIONS

GAUTAM SHROFF

常州大字山书馆藏书童

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521760959

© G. Shroff 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-76095-9 Hardback ISBN 978-0-521-13735-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

ENTERPRISE CLOUD COMPUTING Technology, Architecture, Applications

Cloud computing promises to revolutionize IT and business by making computing available as a utility over the internet. This book is intended primarily for practicing software architects who need to assess the impact of such a transformation. It explains the evolution of the internet into a cloud computing platform, describes emerging development paradigms and technologies, and discusses how these will change the way enterprise applications should be architected for cloud deployment.

Gautam Shroff provides a technical description of cloud computing technologies, covering cloud infrastructure and platform services, programming paradigms such as MapReduce, as well as 'do-it-yourself' hosted development tools. He also describes emerging technologies critical to cloud computing. The book also covers the fundamentals of enterprise computing, including a technical introduction to enterprise architecture, so it will interest programmers aspiring to become software architects and serve as a reference for a graduate-level course in software architecture or software engineering.

Gautam Shroff heads TCS' Innovation Lab in Delhi, a corporate R&D lab that conducts applied research in software architecture, natural language processing, data mining, multimedia, graphics and computer vision. Additionally he is responsible for TCS' Global Co-Innovation Network (COIN), which works with venture-backed emerging technology companies to create and take to market solutions that have disruptive innovation potential. Further, as a member of TCS' Corporate Technology Board, he is part of the process of recommending directions to existing R&D efforts, spawning new R&D efforts, sponsoring external research and proliferating the resulting technology and intellectual property across TCS' businesses.

Preface

In today's world virtually all available information on any technical topic is just a few clicks away on the web. This is especially true of an emerging area such as cloud computing. So why write a book, and, who should read this book and why?

Every few years a new 'buzzword' becomes the rage of the technology world. The PC in the 80s, the internet in the 90s, service-oriented architecture in the early 2000s, and more recently 'cloud computing': By enabling computing itself to be delivered as a utility available over the internet, cloud computing could transform enterprise IT. Such a transformation could be as significant as the emergence of power utilities in the early twentieth century, as eloquently elucidated in Nicholas Carr's recent book *The Big Switch*.

Over the years large enterprises have come to rely on information technology to run their increasingly complex business operations. Each successive technology 'revolution' promises tremendous gains. It falls upon the shoulders of the *technical architects* in the IT industry to evaluate these promises and measure them against the often significant pain that is involved in adapting complex IT systems to new computing paradigms: The transition to cloud computing is no exception.

So, this book is first and foremost for technical architects, be they from IT departments or consulting organizations. The aim is to cover cloud computing **technology**, **architectures** and **applications** in detail, so as to be able to properly assess its true impact on enterprise IT.

Since cloud computing promises to fundamentally revolutionize the way enterprise IT is run, we also revisit many principles of enterprise architecture and applications. Consequently, this is also a book on the fundamentals of **enterprise computing**, and can therefore serve as a reference for a

xi

graduate-level course in software architecture or software engineering. Alternatively, software professionals interested in acquiring the 'architect' tag may also find it a useful read.

From a personal perspective this book is also an attempt to capture my experience of a decade in the IT industry after an initial career in academic computer science: The IT industry seemed ever busier dealing with constant changes in technology. At the same time, every generation of professionals, in particular the technical architects, were constantly reinventing the wheel: Even though automation techniques, such as large-scale code generation using 'model driven architecture' often actually worked in practice, these were far from the panacea that they theoretically appeared to be.

Nevertheless, the academic in me continued to ask, what after all does an enterprise application *do*, and why should it be so complex? In 2004 I wrote an *interpreter* for what appeared to me to be a perfectly reasonable 3tier architecture on which, I thought, *any* enterprise application should run. This was the seed of what became TCS' InstantApps platform. At the same time Salesforce.com was also experimenting with an interpretive architecture that later became Force.com. While software as a service was the rage of the industry, I began using the term Dev 2.0 to describe such interpretive hosted development platforms.

In the meantime Amazon launched its elastic computing cloud, EC2. Suddenly, the entire IT infrastructure for an enterprise could be set up 'in the cloud.' 'Dev 2.0 in the Cloud' seemed the next logical step, as I speculated in a keynote at the 2008 ACM SIGSOFT FSE conference. After my talk, Heather Bergman from Cambridge University Press asked me whether I would be interested in writing a book. The idea of a book had been in my mind for more than a year then; I had envisaged a book on software architecture. But maybe a technical book on cloud computing was more the need of the hour. And thus this book was born.

In my attempt to present cloud computing in the context of enterprise computing, I have ended up covering a rather vast landscape. Part I traces the evolution of computing technology and how enterprise architecture strives to manage change with continuity. Part II introduces cloud computing platforms and the economics of cloud computing, followed by an overview of technologies essential for cloud applications in Part III. Part IV delves into the details of cloud computing and how it impacts application development. The essentials of enterprise software architecture are covered in Part V, from an overview of enterprise data models to how applications are built. We also show how the *essence* of what an enterprise application does can be abstracted

PREFACE

using *models*. Part V concludes with an integrated picture of enterprise analytics and search, and how these tasks can be efficiently implemented on computing clouds. These are important topics that are unfamiliar to many architects; so hopefully, their unified treatment here using matrix algebra is illuminating. Finally, Part VI presents an overview of the industry ecosystem around enterprise cloud computing and concludes by speculating on the possible future of cloud computing for enterprises.

A number of people have helped bring this book to fruition: First of all, Heather Bergman who suggested that I write, helped me finalize the topic and table of contents, and led me through the book proposal process in record time. Once the first draft was written, Jeff Ullman reviewed critical parts of the book in great detail, for which I remain eternally grateful. Rob Schreiber, my PhD advisor from another lifetime, also took similar pains, even 20 years after doing the same with my PhD thesis; thanks Rob! Many of my colleagues in TCS also reviewed parts of the manuscript; in particular Ananth Krishnan, C. Anantaram, Puneet Agarwal, Geetika Sharma, Lipika Dey, Venkatachari Raghavan, Surjeet Mishra, Srinivasan Varadanarayanan and Harrick Vin. I would also like to thank David Tranah for taking over as my editor when Heather Bergman left Cambridge University Press soon after I began writing, and for shepherding the book through the publication process.

Finally, I am grateful for the continuous encouragement and support I have received over the years from TCS management, in particular F.C. Kohli, S. Ramadorai and Phiroz Vandrevala, as well as, more recently, N. Chandrasekaran. I would also like to thank E. C. Subbarao and Kesav Nori, who have been my mentors in TCS R&D, for serving as role models, influencing my ideas and motivating me to document my experience.

I have learned that while writing is enjoyable, it is also difficult: Whenever my intrinsic laziness threatened this project, my motivation was fueled by the enthusiasm of my family. With my wife, sister-in-law and mother-in-law all having studied at Cambridge University, I suspect this was also in no small measure due to the publisher I was writing for! Last but not least, I thank my wife Brinda, and kids Selena and Ahan, for tolerating my preoccupation with writing on weekends and holidays for the better part of a year.

I sincerely hope that you enjoy reading this book as much as I have enjoyed writing it.

Abbreviations

Term	Description
AJAX	Asynchronous JavaScript and XML
AMI	Amazon Machine Image
API	Application Programming Interface
BPMN	Business Process Modeling Notation
CGI	Common Gateway Interface
CICS	Customer Information Control System
CORBA	Common Object Request Broker Architecture
CPU	Central Processing Unit
CRM	Customer Relationship Management
CRT	Cathode Ray Tube
EAI	Enterprise Application Integration
EBS	[Amazon] Elastic Block Storage
EC2	Elastic Compute Cloud
ECA	Event Condition Action
EJB	Enterprise Java Beans
ERP	Enterprise Resource Planning
GAE	Google App Engine
GFS	Google File System
GL	General Ledger
GML	Generalized Markup Language
HDFS	Hadoop Distributed File System
HTML	Hypertext Transport Protocol and Secure Socket Layer
HTTP	Hypertext Transport Protocol
HTTPD	Hypertext Transfer Protocol Daemon

LIST OF ABBREVIATIONS

Term Description

IA	[TCS] InstantApps
IaaS	Infrastructure as a Service
IBM	International Business Machines
IDL	Interface Definition Language
IDMS	Integrated Database Management System
IDS	Integrated Data Store [Database System]
IIS	Internet Information Server
IMS	[IBM] Information Management System
IT	Information Technology
ITIL	Information Technology Infrastructure Library
J2EE	Java 2 Enterprise Edition
JAAS	Java Authentication and Authorization Service
JCL	Job Control Language
JSON	JavaScript Object Notation
LDAP	Lightweight Directory Access Protocol
MDA	Model Driven Architecture
MDI	Model Driven Interpreter
MDX	Multidimensional Expressions [Query Language]
MVC	Model View Controller
MVS	Multiple Virtual Storage [Operating System]
OLAP	Online analytical processing
OMG	Object Management Group
PaaS	Platform as a Service
PKI	Public Key Infrastructure
REST	Representational State Transfer
RMI	Remote Method Invocation
RPC	Remote Procedure Call
SaaS	Software as a Service
SCM	Supply Chain Management
SGML	Standardized Generalized Markup Language
SNA	Systems Network Architecture
SOA	Service Oriented Architecture
SOAP	Simple Object Access Protocol
SQL	Structured Query Language
SQS	[Amazon] Simple Queue Service
SVD	Singular Value Decomposition

Term	Description
TCP/IP	Transmission Control Protocol/Internet Protocol
TCS	Tata Consultancy Services
T&M	Time and Materials
TP Monitor	Transaction Processing Monitor
UML	Unified Modeling Language
URI	Uniform Resource Identifier
URL	Uniform Resource Locater
VM	Virtual Machine
VMM	Virtual Machine Monitor
VPC	Virtual Private Cloud
VPN	Virtual Private Network
VSAM	Virtual Storage Access Method
VTAM	Virtual Telecommunications Access Method
W3C	World Wide Web Consortium
WSDL	Web Services Description Language
WYSIWYG	What You See is What You Get
XHTML	Extensible Hypertext Markup Language
XML	Extensible Markup Language

Contents

Prefa	ce	page xi
List of abbreviations Part I Computing platforms		xiv
		1
Chapt Enter	ter 1 prise computing: a retrospective	3
1.1	Introduction	3
1.2	Mainframe architecture	5
1.3	Client-server architecture	7
1.4	3-tier architectures with TP monitors	10
Chapt The in	er 2 Iternet as a platform	16
2.1	Internet technology and web-enabled applications	16
2.2	Web application servers	19
2.3	Internet of services	22
Chapt	er 3	
Softw	are as a service and cloud computing	27
3.1	Emergence of software as a service	27
	Successful SaaS architectures	29
	v	

此为试读,需要完整PDF请访问: www.ertongbook.com

CO	NT	EN1	ſS
----	----	-----	----

3.3	Dev 2.0 platforms	31
3.4	Cloud computing	32
3.5	Dev 2.0 in the cloud for enterprises	36
Chapt		
Enter	prise architecture: role and evolution	39
	Enterprise data and processes	40
	Enterprise components	40
	Application integration and SOA	42
	Enterprise technical architecture	44
4.5	Data center infrastructure: coping with complexity	47
Part I	I Cloud platforms	49
Chapt	er 5	
Cloud	computing platforms	51
5.1	Infrastructure as a service: Amazon EC2	51
	Platform as a service: Google App Engine	56
5.3	Microsoft Azure	60
Chapt		
Cloud	computing economics	64
	Is cloud infrastructure cheaper?	64
	Economics of private clouds	67
	Software productivity in the cloud	71
6.4	Economies of scale: public vs. private clouds	73
Part I	I Cloud technologies	75
Chapt	er 7	
Web s	ervices, AJAX and mashups	77
	Web services: SOAP and REST	77
	SOAP versus REST	83
	AJAX: asynchronous 'rich' interfaces	85
7.4	Mashups: user interface services	87

vi

CONTENTS

Chapter 8 Virtualization technology	89
8.1 Virtual machine technology	89
8.2 Virtualization applications in enterprises	95
8.3 Pitfalls of virtualization	103
Chapter 9 Multi-tenant software	104
9.1 Multi-entity support	105
9.2 Multi-schema approach	107
9.3 Multi-tenancy using cloud data stores	109
9.4 Data access control for enterprise applications	111
Part IV Cloud development	115
Chapter 10 Data in the cloud	117
10.1 Relational databases	118
10.2 Cloud file systems: GFS and HDFS	121
10.3 BigTable, HBase and Dynamo	123
10.4 Cloud data stores: Datastore and SimpleDB	128
Chapter 11	
MapReduce and extensions	131
11.1 Parallel computing	131
11.2 The MapReduce model	134
11.3 Parallel efficiency of MapReduce	137
11.4 Relational operations using MapReduce	139
11.5 Enterprise batch processing using MapReduce	142
Chapter 12 Dev 2.0 platforms	144
12.1 Salesforce.com's Force.com platform	145
12.2 TCS InstantApps on Amazon cloud	148

vii

CONTENTS

12.3 More Dev 2.0 platforms and related efforts 12.4 Advantages, applicability and limits of Dev 2.0	153 154
Part V Software architecture	159
Chapter 13 Enterprise software: ERP, SCM, CRM	161
13.1 Anatomy of a large enterprise	161
13.2 Partners: people and organizations	164
13.3 Products	167
13.4 Orders: sales and purchases	168
13.5 Execution: tracking work	170
13.6 Billing	172
13.7 Accounting	174
13.8 Enterprise processes, build vs. buy and SaaS	176
Chapter 14	
Custom enterprise applications and Dev 2.0	178
14.1 Software architecture for enterprise components	178
14.2 User interface patterns and basic transactions	180
14.3 Business logic and rule-based computing	188
14.4 Inside Dev 2.0: model driven interpreters	194
14.5 Security, error handling, transactions and workflow	198
Chapter 15	
Workflow and business processes	203
15.1 Implementing workflow in an application	203
15.2 Workflow meta-model using ECA rules	205
15.3 ECA workflow engine	207
15.4 Using an external workflow engine	210
15.5 Process modeling and BPMN	211
15.6 Workflow in the cloud	216

CONTENTS

Chapter 16 Enterprise analytics and search	217
16.1 Enterprise knowledge: goals and approaches	218
16.2 Business intelligence	219
16.3 Text and data mining	225
16.4 Text and database search	235
Part VI Enterprise cloud computing	241
Chapter 17 Enterprise cloud computing ecosystem	243
17.1 Public cloud providers	244
17.2 Cloud management platforms and tools	246
17.3 Tools for building private clouds	247
Chapter 18	
Roadmap for enterprise cloud computing	253
18.1 Quick wins using public clouds	254
18.2 Future of enterprise cloud computing	257
References	264
Index	269

ix

Part I

Computing platforms

Barely 50 years after the birth of enterprise computing, cloud computing promises to transform computing into a utility delivered over the internet. A historical perspective is instructive in order to properly evaluate the impact of cloud computing, as well as learn the right lessons from the past. We first trace the history of enterprise computing from the early mainframes, to client-server computing and 3-tier architectures. Next we examine how the internet evolved into a computing platform for enterprise applications, naturally leading to Software as a Service and culminating (so far) in what we are now calling cloud computing. Finally we describe how the 'enterprise architecture' function within IT departments has evolved over time, playing a critical role in managing transitions to new technologies, such as cloud computing.

此为试读,需要完整PDF请访问: www.ertongbook.com