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A LaminarFlow Heat ¢

F. D. Doty, G. Hosford, J. D. Jones & J.B. Spitzmesser

Doty Scientific Incorporated & Simon Fraser University

Abstract

The advantages of designing heat exchangers in the lami-
nar flow regime are discussed from a theoretical standpoint.
It is argued that laminar flow designs have the advantages
of reducing thermodynamic and hydrodynamic irreversibili-
ties, and hence increasing system efficiency. More concretely,
laminar flow heat exchangers ar: free from the turbulence-
induced vibration common in conventional heat exchangers,
and can thus offer longer life and greater reliability.

The problems of manufacturing heat exchangers suited to
laminar flow are discussed. A method of manufacture is out-
lined which allows compact, modular design. Experience
with this method of manufacture is described, and experi-
mental results are presented.

The problems of fouling and flow maldistribution are briefly
discussed, and some possible applications mentioned.

Introduction

Heat exchanger design always involves a compromise be-
tween three objectives: maximizing the heat exchanger ef-
fectiveness; minimizing the work required to overcome fluid
friction in the heat exchanger; and minimizing the manufac-
turing and material costs of the exchanger. In the past, the
third objective has pushed design in the direction of high-
turbulence heat exchangers, to take advantage of the high
heat transfer coefficient associated with turbulent flow. But
with respect to the first two objectives this is a poor choice:
turbulent flow exacts a disproportionately high penalty in
pumping work, and the vibration engendered by turbulence
shortens the life of the equipment. Second-law analysis shows
us that high efficiency heat exchangers must be non-turbulent
with minimum temperature difference between counterflow-
ing streams [1].

By taking advantage of modern manufacturing techniques,
we can produce heat exchanger designs that would have been
impossible at the time that current design practices evolved.
This allows us to seek greater reliability and higher efficiency
by exploring designs that operate in the laminar flow regime.
In the following paragraphs, we establish some of the basic
design principles that hold in that regime. Our first interest
is in gas-to-gas heat exchangers, though some of our remarks
will also apply to liquid-gas and liquid-liquid heat exchange.

It will be shown below that it is desirable to operate at very
high static pressures (1 to 5 MPa) to minimize the flow veloc-
ity. Mechanical stress considerations therefore favor a tubu-

lar design.

Current practice in compact heat exchangers is dominated
by crossflow designs because they are thought.to simplify
manifoldin prob%ems. However, crossflow has a maximum
practical effectiveness of 50% for symmetric flow conditions
and pumping power losses are increased due to unavoidable
turbulence. Several crossflow exchangers may be used in
series to achieve higher effectiveness, but a counterflow ex-
changer is the only practical method of approaching 100%
effectiveness under symmetric flow.

A counterflow heat exchanger module is shown in Fig. 1.
It consists of a large number of small tubes, manifolded to-
gether in parallel, with a surrounding cage to establish coun-
terflow conditions. Counterflow exchangers have been used
for decades to achieve very high heat recovery [2]. In theory
it has never been difficult to achieve 95% effectiveness, but
in practice this has required prohibitively large and expen-
sive exchangers for gases. We find that a 95% effective heat
exchanger currently costs at least 8 times as much as a 60%

effective design.

For large-scale production of heat exchangers, as for most
other goods produced on a sufficiently large scale, the dom-
inant cost is that of the raw materials used [3]. This is es-
pecially true when novel manufacturing techniques reduce
manufacturing costs by several orders of magnitude. For
this reason, power density or specific conductance (W/kgK)
is one of the most significant figures of merit for a heat ex-
changer. We show below how this figure can be maximized
for a laminar counter-flow heat exchanger, while keeping the
pressure drop and axial conduction losses within reasonable
bounds. We then test this analysis against experiment. In
summary, our analysis shows that we should reduce tube di-
ameter to the smallest value it is feasible to manufacture,
keeping pressure drop in check by shortening the tubes, in-
creasing their number and perhaps increasing the operating
pressure.

Theoretical Analysis of Laminar-Flow Heat Exchangers

Heat exchangers are generally evaluated in terms of their
effectiveness, E, where effectiveness is defined as the ratio of
heat actually transferred to that which would be transferred
by a heat exchanger having infinite heat transfer arca and
operating under the same conditions. It may be shown that
for a counter-flow heat exchanger exchanging heat between
two fluid streams, mass flow rates me and 1y, specific heats
¢¢ and cy, the effectiveness is given by [4):



1 — e-NTU(1-R)

E= 1 Re-NTU(I-R) 1)

where NTU denotes the number of transfer units:

NTU = Y4 )
cm

¢ and m being the specific heat and mass flow rate of the -

fluid stream having the lesser heat capacity, and where R
denotes the ratio of the lesser heat capacity to the greater:

R= cmin":nmin (3)

Cmax™ max

If the capacities of the two streams are equal, the right-hand
side of Eq. 1 becomes undefined and must be replaced by the
simpler expression

NTU

E=§ro+ (4)
For laminar flow conditions, it is well known that the heat
exchange capacity of a tube is independent of tube diam-
eter and gas velocity (See, for example, Problem 14c on
p. 108 of 51]3 The in&ependence of Nusselt number, Nu,
from Reynolds number, Re, for laminar flow indicates that
heat transfer between tube-side and shell-side is determined
solely by the two fluid conductivities and geometric factors.

Consider a tubular counterflow heat exchanger made up of
n tubes, length L, internal diameter d;, with laminar flow
within and without. We shall assume that the fluid flowing
within the tubes is the hotter on entry. We may take the
conductivity of the tube material to be large compared with
that of the two fluids, and hence writ=:

- kcky

where ky and k¢ are the thermal conductivities of the inner
and outer gases respectively, and a and b are dimension-
less coefficients of the order of unity that are functions of
tube inner and outer diameters and tube spacin%. (It is ac-
knowledged that this treatment is unconventional; we claim,
however, that it correctly represents the relevant physical
dependencies, and that it may reasonably be used to estab-
lish a qualitative design strategy.) For tube centers spaced
2d;, with tube wall w = 0.2d;, a is approximately 0.7 and b
is unity. We will assume these geometric relationships and
take ko = ky for the remainder of this discussion.

In addition to achieving a certain effectiveness, the designer
will be concerned with the cost of the heat exchanger, the
pumping losses, and conduction losses. We shall also insist
that the flow remains laminar. Constraints can be written
down corresponding to these requirements. In the following
paragraphs, we shall develop the constraints for the tube-side
flow: the arguments for shell-side flow are very similar.

In conventional heat exchanger design, machining and as-
sembly costs overshadow the cost of the materials used. How-
cver, for reasons to be explained below, we shall consider
material costs as primary. The mass of material required for
the microtubos in a heat exchanger is then

M =0.24rd’nLpm (6)

The tube-side pumping power loss W, can be expressed in
terms of the tube-side mass flow rate my as follows [6):

_198ulmy
Ap= pnrd}
. ; _128pL(r‘n_i 4
= W= nrdé \ p ) M

where p is the density (kg/m®) and 4 is the dynamic
viscosity (kg/ ms%. We shall write this as

: 128um?

where (2 denotes the group L/nd?.

We are going to propose a design made up of many short nar-
row tubes. As we move towards such a design, a loss mech-
anism not previously important becomes significant — lon-
gitudinal thermal conduction through the tube metal from
the hot end to the cool end. We denote the heat flow via
this pathway by W,,. Accurate calculation of this effect is
difficult; a good treatment is provided by [7], pp. 4-53—4-56.
For typical microtube heat exchanger designs, Wy, is about
0.3% of the heat exchange power, so we introduce no serious
inaccuracy by treating conduction losses through the tube
material as decoupled from the flowing fluid.

0207 d?km(Ty - Tc) _ 0.27km(Ty - Tc) 9)
~ L N 0dz

where ky, is the tube metal conductivity, and Ty and T are
the hot and cold temperatures respectively. It is predomi-
nantly this loss mechanism which establishes the theoretical
limit to specific conductance (minimum tube diameter) in
high-efficiency counterflow exchangers.

W

Lastly, the condition that the internal flow be laminar is
expressed by
dmy

Re = <2300 (10)
nm

Let us suppose that there is some combination of the param-
eters n, L and d; that gives a satisfactory value for effective-
ness and gives acceptable leveis of flow losses and conduction
losses. We argue that, whatever the initial values are, it will
always be possible to apply the following strategy: reduce
d; by a factor p; simultaneously increase n and decrease L,
each by a factor p?, thus keeping flow losses and U A, hence
E, constant. This change will maintain laminar flow while
reducing system mass by a factor p2..We can reduce d; un-
til either conduction losses become unacceptable or until we
go below the limits of manufacturability. The motivation for
reducing d; in this way is provided by Equation 6: mass, and
hence, given our assumptions, cost, goes down as p2.

It is straightforward to calculate a value of d; typical of this
design method. Let us suppose that for a given application,
the pumping power may not exceed 1% of the ideal heat
exchange power. Then

Wy



Substituting from Eq. 8 and rearranging:

. mc(Ty - Tc)p? .
Q< —To8004 (12)

Taking the maximum permitted value of Qm from Eq. 12,
we consider the limit imposed by conduction losses. Let us
also require that conduction losses not exceed 1% of the ideal
heat exchange power. Then

Wen
——— < 0.
i Ty - Tg) =000 (13)

Substituting from Eq. 9 and rearranging, then substituting
from Eq. 12 gives:

207k
=d2 "0

_ [20 x 12800pkm
=42\ e, - 1o) .

Evaluating Eq. 14 for a stainless-steel heat exchanger with
helium at 1 MPa as the working fluid, operating between
temperatures of 900 and 300 K, we obtain a lower limit
on tube diameter of about 90 microns. This figure is typ-
ical of the dimensions yielded by this design method, and
is about an order of magnitude smaller than appears feasi-
ble from manufacturing and corrosion considerations. This
establishes that, given our assumptions, it is desirable to de-
sign for the finest-diameter tubes feasible. (We have only
examined tube-side flow, but a similar argument would lead
to the same conclusions for shell-side flow.)

It may be questioned, however, whether our assumptions
are reasonable. For some space applications, reducing heat
exchanger mass is desirable in itself. To show that our tech-
nology is practical for terrestial applications, we must show
that we can so reduce the cost of machining and assembly
that material costs come to predominate; we must also ad-
dress the problem of fouling and flow maldistribution. Before
dealing with these questions, we will fill out the above cal-
culation with a complete design example, then describe an
experimental test of the theory.

Let us suppose that the helium in the above example is flow-
ing at 1 kg/s, and that we wish to exchange heat between
this and another Fas stream, flowing at the same rate, with
an effectiveness of 95%. Substituting the appropriate values
of physical constants in Eq. 2, 4 and 5 and rearranging, we

obtain:
nL > 94000m (15)

We shall continue to require that the pumping power needed
to overcome fluid friction be less than 1% of the heat ex-
change power. Using Eq. 7, we obtain

n 128u m)?
o lootc(TH -T¢)d! (7) (16)

In accordance with our design strategy, we select the smallest
value for d; that it is practical to manufacture. We shall show
below that this value is about 0.5 mm. Substituting for d;
and the other parameters, we obtain

™ 5 960000 (17)

[

Combining Eq. 15 and 17 gives L ~ 0.3 m and n ~ 300000.
For very large-scale applications, the number of parallel tubes
will be numbered in the millions, requiring thousands ef par-
allel modules to maintain uniform shell-side flow. Such ge-
ometries are unusual for counterflow heat exchangers, but
are quite typical of regenerative heat exchangers such as gas
turbine rotating-porous-ceramic-wheel recuperators or Stir-
ling cycle wire-mesh regenerators.

Method of Manufacture

The discussion above assumes that manufacturing cost can
be treated as primarily dependent on heat exchanger mass.
As every heat exchanger designer knows, this is not currently
the case. If our discussion of design is to be of more than
academic interest, we must therefore show that a practical
method of manufacture can be found.

To realise the unconventional heat exchanger designs required
by the above theory, we manifold together large numbers of
identical modules, each module containing several hundred
tubes. Each module is about 100 mm long; this length repre-
sents a compromise between the need to minimize conduction
losses and the tendency of longer tubes to distort during the
manufacturing process. The modules can be manifolded in
series to achieve multiples of this length. A typical module
is shown in Fig. 1.

Figure 1

To facilitate uniform shell-side flow and to permit fineblank-
ing of the header tubestrips, it is necessary to depart from
the disc-shaped header tubesheet normally used in heat ex-
changers and use a rectangular header tubestrip, as shown,
with fewer than ten rows of tubes.

Advances in high-speed laser welding technology and dia-
mond dies make it possible to produce very small stainless
steel tubing at low production costs — less than $0.14 per
meter [8]. These can be joined to the endplates by diffusion
welding:



Advances in Diffusion Welding Technology

Diffusion welding occurs when clean metal surfaces are held
together under pressure at high temperatures. The combined
action of solid-state diffusion mechanisms and solid-state sur-
face tension result in recrystallization or grain growth across
an interface and the solution or dispersion of interfacial con-
taminants [9]. The time required to form the bond is an
inverse exponential function of temperature and a quadratic
function of surface finish and interfacial gaps. For most
nickel-chromium alloys with precision surfaces (0.4 um rms)
under moderate pressure (5 MPa, or 700 psi), high-quality
welds (90% of the base metal strength) can be obtained in
several seconds at 1230°C.

Method of Assembling Tube Arrays

We have developed a technique for joining microtubes to
header strips en masse. The technique permits tube align-
ment, insertion, and welding rates to exceed 1,500,000 pieces
per day per production line at an estimated production’cost
of less than $0.01/tube.

The following sequence of operations is followed: the tubes
are finished to the required length; the tubes are inserted
into adjacent, parallel, precision, non-sacrificial spacer forms,
similar in size and pattern to the header tubestrips but with
precision, slip-fit, countersunk holes (Fig. 2a), using a hopper-
and-Gatling-gun arrangement (Fig. 2b). Next, the spacer
forms are sﬁ apart to near opposite ends of the tubes; caps
are placed over the ends of the tubes to secure the tube ends
(Fig 2c) and the tube-spacer-cap fixture assembly.is placed
in a mold suitable for vacuum injection. The mold is evac-
uated and a molten, fusible alloy is injected into the heated
mold. The mold is then cooled below the solidus tempera-
ture, the encapsulated assembly removed and the securing
caps and spacer forms slid off, exposing the tube ends (Fig.
2d). Lastly, the assembly is loaded into a suitable fixture
on a press and the header tubestrips pressed onto opposite
ends of the tubes (Fig. 2e; thegtypical force required for 1000
1-mm tubes is 105 N, about 10 tons). The fusible alloy is
melted and cleaned from the assembly by a combination of
melting, vibration, and air jets, followed by chemical clean-
ing.

Suitable weld conditions are readily achieved if the tube di-
ameter and hole size can be held to very tight tolerances. The
use of hardened tubes and annealed tubestrips then makes it
possible to press the tubes into slightly undersized holes in
the thin, rectangnlar, header tubestrip. With hard, straight
tubes, of length less than 300 times their O.D., it is possible
to press them into soft tubestrips with up to 3% interfer-
ence without serious difficulty. With proper attention to
surface quality and a minimum of 0.4% interference fit, the
conditions required for diffusion welds are readily achieved.
Surface finishes of about 0.4 gm rms in the area of the diffu-
sion weld have proven to be 100% leak-tight — within 10-¢
standard mm3/s to hydrogen at one atmosphere.

After the header tubestrips have been pressed onto the mi-
crotubes and the assembly of microtubes and header tube-
strips is thoroughly cleaned, it must be heated to effect the
diffusion weld to the tubes. Most of our diffusion welding
thus far has been done in inert or reducing atmosphere ovens
and consequently has been limited to slow cycles. Numer-
ous experiments are required to determine optimum surface
preparation techniques, atmosphere, interference, and tem-
perature cycle for diffusion welding. About ten seconds at
1230°C appears sufficient for full-strength diffusion welds in
the Ni-Cr-W superalloy Haynes 230.



Ad in Fineblanking Technal

The requirement of low production costs in the hard-drawn
1-mm tubing imposes a tolerance limit of +0.4%, which then
leaves a +£0.9% tolerance requirement for the hole diameters
in the tube-strip. Fortunately, the hole diameter need not be
constant over the majority of its lengih, and a slight taper is
in fact beneficial in assembly. Punching consistently suitable,
closely spaced microholes in superalloys does represent a ma-
jor technical challenge. Our initial prototypes used drilled
holes, followed by reaming. More recently, we have success-
fully used tubestrips produced by Swiss fineblanking — a con-
trolled cold-flow blanking (punching) process that includes
the use of a counter-punch and a high pressure ring inden-
ter (stripper) which applies sufficient pressure to the metal
surfaces near the punch edges to prevent normal and planar
deformation of the material during punching [11]. The tech-
nique requires compound dies and triple-action presses, but
results in minimal edge fracturing a.ng deformation.

No other technique can come close to competing on a cost ba-
sis in large scale production with Swiss fineblanking — less
than $1 per tubestrip. However, electrochemical and elec-
trical discharge techniques are likely to permit even smaller
holes with closer spacing. We also plan to evaluate these
techniques — especially for small scale, ultra-high density
applications.

Experimental Results

We have assembled several dozen fully welded prototype 103-
tube MTS modules similar to the one shown in Fi
The modules used 0.33 mm ID tubes, 127 mm in length,
with 0.1524-mm walls. The tube-strip has 5 rows of tubes
" with 21 holes in the odd-numbered rows and 20 holes in the
even-numbered rows, arranged in a triangular pitch on 1.25-
mm centers. Three moduies were assembled into shells with
manifolds to distribute tube-side and shell-side flows, and
baffles between the modules to promote uniform shell-side
flow through each module.

TR o~

Figure 4
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Figure 3 shows the modules, baffles, manifolds and partially
assembled shell. Figure 4 shows a finished prototype bank.
The entire assembly has an overall length of 190 mm, a hen%\ht
of 30 mm, a width of 35 mm and a total mass of 0.3 kg.
Scaling up to a bank with greater numbers of modules and
more tubes per module would reduce the specific mass of the

bank by up to 70%.

The finished bank was used for gas-gas heat exchange, using
the experimental set-up diagrammed in Figure 5.
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High-pressure gas from a bottled supply was supplied to the
tube-side, its inlet and outlet temperatures, T3 and T}, be-
ing measured using sheathed and grounded 1.6-mm Type 4
chromel-alumel thermocouples. The outlet gas was then ex-
panded through a pressure-reduction valve, electrically heated,
and allowed to flow through the shell-side, inlet and out-
let temperatures T} and T3 again being measured with un-
shielded chromel-alumel thermocouples. The outlet gas was
exhausted to atmospheric pressure, its volumetric flow rate
being measured with a Dwyer floating-ball flowmeter. Pres-
sure drops across tube-side and shell-side were measured us-
ing Dwyer differential pressure transducers. Following each
change in gas flow rate, care was taken to ensure that flowme-
ter and thermocouple readings reached steady values before
any measurements were taken.

Data Reduction

To compare the experimental results with our theoretical
analysis, we calculate the effectiveness of the heat exchanger
from the temperature measurements Ty, T3 and Ty. Since the
thermal capacities of the hot and cold streams are equal, we
can invert Equation 4 to calculate NT'U from effectiveness:

E

We calculate U A from
AT
UA= "‘C;G (19)

where AT is the temperature drop between T; and T5 and
Tp is the mean temperature difference between hot and cold
streams. We compare this with the value predicted by our
Equation 5, using tabulated values for k¢ and kj;, evaluated
at the mean tube-side and shell-side temperatures respec-
tively. Similarly, we compare measured values of Ap with
those calculated from Equation 7. The errors for each cal-
culated quantity are estimated using Theorem 3 from [12].



m (mg/s) p (kPa) T (C) T, (C) T; (C) Ty (C) E(%) NTU UA(W/K) UA(Eq. 5)
Nitrogen -
470+ 20 32243 104.740.5 30.9+0.5 23.0+0.5 93.0+£0.5 85.7£0.6  6.0£0.3 3.740.4 7.1
840+ 20 32243 96.5+0.5 32.3+0.5 23.3+0.5 84.1+0.5 83.1x0.7 4.9+0.2 5.3+0.5 7.1
930+ 20 32243 99.440.5 33.0+0.5 22.840.5 85.840.5 82.240.7  4.6%0.2 5.440.5 7.1
373+ 20 705+3 51.4+£0.5 28.5+0.5 26.1+0.5 48.840.5 89.7+0.7 8.7+0.6 3.51.4 7.1
738+ 20 146243 64.7+0.5 28.9+0.5 25.3+0.5 59.240.5 86.0+0.7 6.1+0.4 6.0+1.3 7.1
1085+ 20 1068+3 64.840.5 28.6+0.5 23.6+0.5 58.3+0.5 84.240.7 5.3+0.3 7.1+1.2 7.1
1413+ 20 148643 67.3£0.5 29.3+0.5 22.940.5 59.5+0.5 82.4+0.7 4.7+0.2 7.9+1.1 7.1
1824+ 20 147043 58.1+£0.5 23.3+0.5 15.3+0.5  48.8+0.5 78.240.7  3.6+0.1 7.6+0.9 7.1
Helium
11747 74943 107.540.5 28.3+0.5  23.540.5 103.6+6.5 95.4+0.6 2143 11.1£2.5  39.0
7947 756+3 103.8+0.5 29.5+0.5  24.0+0.5 100.5+0.5 407 2244 6.9+ 1.6 39.0
21347 825+3 109.44£0.5 28.7+0.5  23.140.5 103.4+0.5 .0+0.7 13.3+1.4 154426  39.0
Table 1

The most serious source of error arises from the small values
of T at high effectiveness; this may be remedied by the use
of differential thermocouples.

The values of UA calculated from Equation 5 are obtained
setting the dimensionless parameters a and b to unity. These
calculated values agree quite well with the experimental re-
sults for moderate values of effectiveness (75-85%). At higher
values of F, however, there is clearly a discrepancy between
theory and experiment, which we believe to result from flow
maldistribution. In support of this belief, we note that the
discrepancy is most serious at low flow rates, consistent with

the findings of Mveller and Chiou [13].

The increase in U A with flow rate might be attributed to tur-
bulence, but we think this unlikely: the maximum tube-side
Reynolds number was approximately 1400 for nitrogen, 160
for helium. Turbulence would also be expected to result in
measured values of Ap higher than predicted by Equation 7.

m (mg/s) p (KPa) Ap (kPa) Ap (Eq. 7)
Nitrogen
470+ 20 32243 5.140.2 3.740.2
840+ 20 32243 9.5+0.2 6.6+0.2
930+ 20 32243 11.1+0.2 7.34£0.2
373+ 20 705+3 1.3+£0.05 1.3+0.2
738+ 20 146213 1.5+£0.05 1.34£0.2
1085+ 20 1068+3 3.3+0.1 2.5+0.2
1413+ 20 1486+3 3.71£0.1 2.3+£0.2
1824+ 20 1470+3 5.540.2 3.1+£0.2
Helium
11747 74943 2.3+0.1 3.0+0.2
7917 75643 1.5+0.05 2.0+0.2
213+7 82543 4.440.1 5.540.2
~lable 2

Tube-side pressure drops were also measured, and are re-
ported in Table 2. These results are reasonably well pre-
dicted, though experimental results for helium are somewhat
lower than expected. This is consistent with minor tube-side
maldistribution, though we expect the majo: maldistribution
problems to be on the shell side.

Even given the extent to which measured heat transfer falls
short of theoretical performance at high E, the absolute val-
ues of specific conductance demonstrated are quite encour-
aging, with a figure of 50 W /K kg for the sixth test.

Operational Problems

We have argued that a laminar-flow design is theoretically
appealing, and reported some experience with the manufac-
ture of a prototype. Several major questions, however, must
be addressed before heat exchangers of the MTS type can be
considered for practical use.

Fouling

Fouling is often a serious problem for heat-exchanger de-
signs characterised by very narrow flow passages, as is the
MTS heat exchanger. Marner and Suitor point out in their
review of this area that fouling exacts a double penalty, re-
‘ducing effectiveness and increasing pressure drop 14K In
the laminar-flow regime, if the fouling is uniform between
tubes and the conductivity of the deposit is high compared
with that of the working fluid, Equation 5 suggests that the
effectiveness penalty will not be serious. There are some ap-
plications in which fouling is unlikely to be of concern, for
example, gas-gas heat exchange in a closed Brayton cycle
used for extracting power from a nuclear reactor, and for
these applications the MTS heat exchanger may be appeal-
ing. For other applications, it may be possible to reduce
fouling to acceptable levels by continuous cleaning of the gas
streams. We are in the process of evaluating several cleaning
{ne};hods, including filtration and electrostatic precipitation
15].

Flow Maldistribution

The very small scale of the component modules of the MTS
heat exchanger requires careful design of manifolds and baf-
fles if flow maldistribution is not to be a problem. Mueller
and Chiou give a general review of this problem in [13]. Of
the causes of flow maldistribution discussed in [13], poor
manufacturing tolerances are not thought to be a problem for
tube-side flow at the level of individual MTS modules: the
method of manufacture gives a very uniform tube size. As
the experimental results suggest, however, shell-side maldis-
tribution does appear to be a serious problem in the proto-
type banks. We are currently investigating the extent and
control of shell-side flow maldistribution, and the optimal
design of manifolds and baffles.

Applications
Surface Cooling

There are applications where it is necessary to handle ex-
tremely bivh surface heat fluves (the first-wall in a fusion



