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Preface to the First Edition

The present volume is an adaptation of a series of lectures on numerical
mathematics which the author has been giving to students of mathematics
at the Novosibirsk State University during the span of several years. In
dealing with problems of applied and numerical mathematics the author
sought to focus his attention on those complicated problems of mathe-
matical physics which, in the course of their solution, can be reduced to
simpler and theoretically better developed problems allowing effective
algorithmic realization on modern computers.

It is usually these kinds of problems that a young practicing scientist
runs into after finishing his university studies. Therefore this book is pri-
marily intended for the benefit of those encountering truly complicated
problems of mathematical physics for the first time, who may seek-help
regarding rational approaches to their solution.

In writing this book the author has also tried to take into account the
needs of scientists and engineers who already have a solid background in
practical problems but who lack a systematic knowledge in areas of numerical
mathematics and its more general theoretical framework.

Consequently, the author has selected a form of exposition which, in his
opinion, helps to attract the attention of a wide range of researchers to
problems of numerical mathematics. This style has required certain con-
cessions in the exposition, thus allowing concentration only on basic ideas
and approaches. As for the details (sometimes important) and the possible
generalizations (such as minimal smoothness requirements, constraints on
the input data, etc.), they are obvious to the specialist and present useful
exercises for a beginner.

Chapter 10 is an expanded version of the paper given by the author at the
International Congress of Mathematicians in Nice (1970). This chapter

v



vi Preface to the First Edition

gives some idea of the material considered in the previous chapters, and
of various methods and problems of numerical mathematics that are of
fundamental importance but have not found their way into this volume.

In the process of preparation for publication this book has undergone
considerable changes in response to advice.and comments obtained by the
author from his colleagues and associates. Those whose help is gratefully
acknowledged include M. M. Lavrentiev, V. 1. Lebedev, 1. Marek, M. K.
Fage, and N. N. Yanenko. They have made a number of constructive
comments regarding the exposition of individual chapters, especially the
first and fifth. The changes in the second chapter, which are due to Yu. A.
Kuznetsov, are so profound that the nature of his contribution in this part is
essentially that of coauthorship. The author has also enjoyed valuable advice
and comments from V. T. Vasil’ev, V. P. I’in, A. N. Konovalov, V. P.
Kochergin, V. V. Penenko, V. V. Smelov, U. M. Sultangazin, and others.
G. S. Rivin did considerable work in editing the manuscript. To all these, as
well as M. S. Yudin who took part in preparing the book for publication, the
author expresses his deep gratitude.



Preface to the Second English Edition

The second edition is a re-written version of the first, remedying various
ambiguities and typographical errors, and including new material that in the
author’s opinion extends the scope of the methods covered therein. This
edition includes a new chapter dealing with optimization theory, which is
today an indispensible part of the development of mathematical models and
of methods for implementing them.

Part of the material in this edition was published in 1973, in a monograph
having the same title. The present text is a manual differing essentially from
the monograph in that it contains a number of new ideas and algorithms of
methodological and practical interest. In particular it includes:

(1) new optimization algorithms based on variational methods;

(2) problems of automating the numerical processes by use of the so-called
method of *“fictive”” domains;

(3) consideration of iterative algorithms for the splitting process for non-
commutative operators;

(4) the method of incomplete factorization, and other topics.

That portion of the book dealing with the interpolation of functions by the
use of splines has been extended, and in this edition forms a self-contained
chapter. Also, a separate chapter has been devoted to the notions connected -
with Richardson’s extrapolation methods for obtaining a higher order of
approximation in the solution of problems. The portions of the book dealing
~with variational-difference methods contain a number of new ideas, e.g., the
representation of continuous functions by piecewise-discontinuous bases,
and the construction of bases that take into account the singularities of
solutions, as well as other new notions. The chapter dealing with the solution
of inverse problems has been expanded by the inclusion of new results in
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viii Preface to the Second Edition

perturbation theory for the solution of nonlinear problems of mathematical
physics and for the analysis of the sensitivity of mathematical models with
respect to variations in the initial data. There are also other expansions of
the text. e

This new material should provide for a better understanding of the
methods of numerical mathematics for the solution of complex problems
in applied mathematics.

The author expresses his deep gratitude to Yu. A. Kuznetsov, whose
contribution to the preparation of the book cannot be over-estimated. For
the contributions of V. V. Smelov, V. P, I'in, V. V. Shaidurov, V. I. Agosh-
kov, V. A. Vasilenko, A. M. Matsokin, V. A. Bulavskii, A. L. Buchheim,
Yu. S. Zav'yalov, V. A. Kuzin, G. S. Rivin, V. A. Tsetsokho, and also
V. 1. Drobyshevich, V. P. Dymnikov, and V. V. Penenko, the author is
also deeply grateful.

The manuscript was read by N. S. Bakhvalov, V. I. Lebedev, and M. K.
Fage, who made many valuable comments which helped to improve the
book. That portion of the text concerned with variational inequalities was
written on the basis of material graciously made available to the author by
the French mathematicians J. L. Lions and R. Glowinski. To all those
mentioned, the author expresses his warmest thanks.

In studying the book, the reader is recommended to make use of the
exercises contained in Problems in Numerical Mathematics, by Droby-
shevich, Dymnikov, and Rivin, Moscow, Nauka, 1980, which corresponds to
the éxpository material in this text.

The English translation has been reviewed by the author, and fully
corresponds to the Russian original version. The author appreciates very
much the cooperation of Springer-Verlag.

G. 1. Marchuk
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Introduction

Modern electronic computers have put into the hands of research workers an
effective means for using mathematical models of complex problems in
science and technology. In consequence, quantitative methods of research
have spread into practically all fields of human endeavor, and mathematical
models have become a tool of knowledge.

The role of mathematical models is far from being exhausted in studying
natural laws. Their significance is constantly being increased by the natural
tendency toward optimization of technical processes and technological
systems for planning experiments. In the process of research, and in the desire
to develop a detailed representation of the processes under study, we are
driven to the construction of ever more complex mathematical models,
which require refined and generally applicable mathematical methods.
Mathematical models are implemented on an electronic computer by the
methods of numerical mathematics, which are continually being perfected,
in keeping with developments in computing technology.

Every reduction of the problems of mathematical physics or of technology
usually comes down, in the end, to a set of algebraic equations having some

definite structure. Therefore, the subject of numerical mathematics is,
as a rule, connected with methods of reducing a problem to a system of
algebraic equations and subsequently solving them.

The construction of a set of algebraic equations corresponding to a problem
with continuously varying arguments relies, in general, on @ priori informa-
tion arising from the original problem. We may know, for instance, that the
solution must belong to a given class of functions characterized by given
smoothness ptoperties, or by properties of the operator associated with the
problem, or by properties of the boundary conditions, etc. Such information -
in many cases has a decisive influence on the choice of the numerical method
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2 Introduction

to be used for the solution of the corresponding algebraic equations. As a
rule, the properties of the algebraic analog of the original problem must reflect
our a priori information on the original constraints. This refers primarily to
the operator of the problem and to the preservation of its properties during
the reduction of the problem from one of continuous arguments to a discrete
version.

Clearly, such a principle may -be taken as a basic assumption in many
problems. At the same time, we must note that the inheritance of the proper-
ties of operators during reduction opens up possibilities for the use of well-
developed methods of functional analysis, which usually give us a simple and
universal way of studying the effectiveness of the algorithms of numerical
mathematics.

We now turn to a brief overview of the book in order to point out the
weightings and the new ideas presented in it.

- Chapter 1 is devoted to general questions in the theory of difference
schemes. Along with the classical concepts such as approximation, countable
stability, and convergence of solutions of difference equations, we present
some important results connected with the general properties of basic and
adjoint problems. These will be used in many later chapters. Section 1.1.2
contains contemporary algorithms for computing the bounds of the non-
negative spectrum of matrices, and is of special interest. It is well known that
the upper bound of the spectrum is found by a well-developed iterative
process, and the implementation usually gives no trouble. The smallest
eigenvalue—the lower bound of the spectrum—is usually difficult to compute.

The simplest method, theoretically, for finding the smallest eigenvalue
is by estimating the maximal eigenvalue of the inverse operator and is of little
use algorithmically. We present another approach, based on shifting the
spectrum, which allows us to find the smallest eigenvalue rather easily. We
have dwelt on this topic at some length because many numerical algorithms,
especially those connected with the optimization of iterative processes,
rely essentially on a priori information about the bounds of the spectrum.

In Chapter 2 we consider methods for constructing difference schemes,
and we focus our attention on two approaches: the method of integral
relationships and variational methods. Each of these approaches has
advantages and weaknesses. We note only that they are not independent
and under certain conditions lead to identical difference schemes approximat-
ing the original differential problems.

Nevertheless, it must be noted that the variational approach is to be
preferred in many cases since it preserves the definiteness of the initial
operators in the passage to the difference scheme. It is important to observe
that this happens automatically in a wide class of problems.

We limit ourselves to the consideration of three methods of constructing
difference schemes by the variational approach: namely, the methods of
Ritz, Galérkin, and least-squares. These, of course, do not exhaust the great
multiplicity of variational approaches, but they do provide an acquaintance



Introduction 3

with the general principles of the construction of difference schemes, which
can be easily extended to other cases.

A few words on the method of finite elements. We may characterize it as a
conveniént way to construct difference schemes using the variational
approach. At its methodological roots it is closely connected with Fourier
analysis; instead of a basis of continuous functions (e.g., trigonometric
functions, Legendre, or Hermite polynomials, etc.) we deal with polynomials
which vanish outside a comparatively small region in the space of their
arguments. These functions have been called finite elements.

The application of variational methods to the construction of difference
schemes is not accidental. In fact; it follows from theory that a variational
functional which adequately reflects definite laws of mechanics, mathe-
matical physics, dynamics, etc., attains its extremal value ou the solution of
the problem that interests us. Therefore, if we are given a variational func-
tional and a definite class of functions on which we are to find the minimum
of the functional, the rest of the task consists of an algorithmic search for the
function yielding an extremal of the functional.

If we restrict the class of admissible functions by imposing additional
constraints, the minimizing function may be not a solution of the original
problem but merely an approximation to the exact solution.

As the means for numerical technology becomes more powerful in the
future, the role of variational methods for constructing solutions of problems
of mathematical physics will continue to grow. Goal-directed methods of
enumerating trial functions belonging to a wide class are beginning to appear,
providing an effective means for finding extremal solutions. Thus, the use of
variational methods for finding solutions to problems is ever more closely
linked to the question of optimal organization of the algorithm for obtaining
a solution to these problems with a given precision, ie., to the theory of
optimization.

Together with the classically formulated problems for the solution of tasks
in science and technology, it is often necessary to deal with nonclassically
formulated problems, for instance, those with constraints. Of course, the
simplest of the constrained problems are classical, as in the case of boundary
conditions for differential problems.

More complex problems with constraints demand a more complex
mathematical apparatus for their solution. For instance, if we are required to
find the deflection of a membrane under the action of various forces, while
its position is constrained from above and below by given functions of the
coordinates, the customary classical approach is powerless. However,
if we set up a correspondence between this problem and some variational
functional, and seek the minimum of the functional over the class of functions
that each satisfy the given constraints, the minimizing function will be the
solution to our problem.

A wide collection of studies in this direction has been carried out by
French mathematicians. They have considered the so-called variational
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inequalities, which are specially adapted to the solution of problems with
constraints. These questions are discussed in Section 2.8.

In Chapter 3 we deal with the interpolation of net functions. The inter-
polation problem arises whenever we must extend a function defined on the
net to a continuous function over the whole region. Here we are concerned
with the task of extending an approximate solution to the whole region,
given its values on the vertices of the net, and with the task of reducing ex-
perimental data given on a discrete set of points.

Theinterpolation problem is a fundamental part of a system for automating
construction project work, where the graphic presentation of information is
at the very heart of the problem. The interpolation problem is not new, and
classical methods are fully explained in the mathematical literature. A new
direction in interpolation theory has been exploited in the last few decades;
this is the use of the so-called spline interpolations to which Chapter 3 is
essentially devoted.

Spline interpolations offer the best means of smooth completion of net
functions on given classes of functions. The optimality of the spline is con-
nected with its special extremal property. Since spline approximation is being
used ever more widely in all areas of science and technology, it is necessary
in our opinion that the reader should become acquainted with it.

Chapter 4 is essentially given over to iterative methods of solving linear
algebraic equations. We discuss the general approaches to the solution of
algebraic systems, and specific methods as well, in connection with peculiar-
ities of the approximation of problems of mathematical physics by the use of
difference and variational-difference methods. Although the literature on
iterative methods is extensive and contains descriptions of many effective
methods, we have considered not only the classical processes but also, and
basically focused attention on, iterative methods optimizable by quadratic
functionals. This constitutes our general approach to questions of optimiza-
tion, for the development of numerical algorithms and for their implemen-
tation.

In the case of specific problems arising from the particular form of the
matrices that arise in the numerical solution of problems in mathematical
physics, we turn to methods of splitting matrices into the simplest within the
general scheme of the iterative process. The splitting method is a natural
dévelopment of the alternating direction method, playing an exceptional role
in the numerical solution of problems in mathematical physics. It has
numerous modifications and generalizations, some of which make use of
variational principles.

Special attention should be paid to the direct methods of solving finite-
difference equations, as discussed at the end of Chapter 4. These are primarily
the fast Fourier transform and the method of cyclic reduction. Their applica-
tion is relatively recent, and they are becoming increasingly popular.

Chapter 5 is devoted to methods of solving nonstationary problems.
These essentially use the idea of splitting complex operators into simpler



Introduction 5

ones. We analyze not only methods well established in practice, such as the
stabilization and predictor-corrector ‘methods, but also, in some detail,
the method of component-by-component splitting, which is more effective,

in our opinion. The ideas are discussed in Sections 5.3.3 and 5.4.

The component-by-component method permits, at each time step, the
reduction of a complex problem in mathematical physics to a sequence of
very simple one-component problems. As a result, we arrive at an effective
algorithm for implementation on an electronic computer which is absolutely
stable and yields a second-order approximation in both time and space.
It'is applied to a wide class of nonstationary problems in mathematical
physics.

In Chapter 6 we consider methods for increasing the precision of approxi-
mate solutions, developed by Richardson and Runge. A refinement of an
approximate solution can be obtained in different ways, generally by using
a higher-order approximation to the differential or integral equation in
question. Richardson proposed to use a difference approximation of a
comparatively low order of accuracy, but to apply it to a sequence of nets.
Thus, if the initial difference equation corresponded to an approximation on
a net with mesh length h, the next would correspond to a mesh length h/2,
and so on. As a result, we arrive at difference equations defined on a sequence
of nets. It turns out that, if a number of constraints are imposed on the
operators and the initial values of the problem, a linear combination of the
approximate solutions on the sequence of nets yields a solution with a higher
order of precision than the initial solutions.

Richardson’s extrapolation method, first proposed for the solution of
ordinary differential equations, was successfully applied to boundary-value
problems for equations of elliptic and parabolic type. Naturally, various
singularities arise, and these are noted in the implementation schemes. It
must be emphasized that Richardson’s method can be applied to the solution
of problems with a small parameter or for conditionally well-posed problems
by using the method of regularization. In this case the Richardson method is
based on the solution of problems with distinct parameters converging in the
limit to some value. Thus the extrapolation method permits us to bring into
numerical mathematics new ideas which successfully use various optimiza-
tion algorithms for the solution of problems. (

'~ We must also point out the special place that has been set aside for this
method for the solution of problems by variational-difference methods.
‘In fact, we normally have two alternatives: either obtain a solution by dif-
ference equations with a very small step on the basis of rather coarse dif-
ference approximations, or use a scheme with a higher order of approxima-
tion and larger steps in the difference schemes.

The first method is simple but demands a larger volume of computation;
the second is logically more difficult but demands fewer arithmetic operations.
Therefore, neither is effective for problems of mathematical physics if highly
precise results are required. The notion therefore arose of using the simplest



