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Preface

Fracture mechanics is now considered a mature subject and has become an impor-
tant course in engineering curricula at many universities. It has also become a useful
analysis and design tool to mechanical, structural, and material engineers. Fracture
mechanics, especially linear elastic fracture mechanics (LEFM), is a unique field in
that its fundamental framework resides in the inverse square root type singular stress
field ahead of a crack. Almost all the fracture properties of a solid are characterized
using a couple of parameters extracted from these near-tip stress and displacement
fields. In view of this unique feature of fracture mechanics, we feel that it is essen-
tial for the reader to fully grasp the mathematical details and their representation of
the associated physics in these mathematical expressions because the rationale and
limitations of this seemingly simple approach are embodied in the singular stress
field.

There are already more than a dozen books dealing with fracture mechanics that
may be used as textbooks for teaching purposes. With different emphases, these
books appeal to different readers and students from different backgrounds. This book
is based on the lecture notes that have been used at the School of Aeronautics and
Astronautics, Purdue University, for more than 30 years. It is intended as a book
for graduate students in aeronautical, civil, mechanical, and materials engineering
who are interested in picking up an in-depth understanding of how to utilize frac-
ture mechanics for research, teaching, and engineering applications. As a textbook,
our goal is to make it mathematically readable to first-year graduate students with a
decent elasticity background. To achieve this goal, almost all mathematical deriva-
tions are clearly presented and suitable for classroom teaching and for self-study
as well.

In selecting and presenting the contents for this book, we use the aforementioned
rationale as a guide. In Chapter 2, the Griffith theory of fracture and the surface
energy concept are introduced. Chapter 3 presents the elastic stress and displacement
fields near the crack tip and introduces Irwin’s stress intensity factor concept. The
chapter describes detailed derivations of the stress fields and stress intensity factor K
using the complex potential method and Williams’ asymptotic expansion approach.
Finally, the chapter introduces the fracture criterion based on the stress intensity fac-
tor (K-criterion) and discusses the K-dominance concept to make the reader aware of
the limitation of the K-criterion.

Chapter 4 is totally devoted to energy release rate in conjunction with the path-
independent J-integral. The energy release rate concept is first introduced, and the
relationship between the energy release rate G and stress intensity factor (G — K rela-
tion) is established followed by the fracture criterion based on the energy release
rate (G-criterion). The J-integral is widely accepted because its value is equal to
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the energy release rate and it can be calculated numerically with stress and dis-
placement fields away from the singular stress at the crack tip. Another simple, yet
efficient, crack-closure method has been shown to be quite accurate in evaluating
energy release rate. Therefore, a couple of finite element-based numerical meth-
ods for calculation of energy release rate and the stress-intensity factor using the
crack-closure method are included in this chapter.

In most fracture mechanics books, the near-tip stress field is presented in plane
elasticity for Mode I and Mode II loadings and in generalized plane strain for Mode
III. In reality, none of these 2-D states exists. For instance, a thin plate containing a
center crack is usually treated as a 2-D plane stress problem. In fact, the plane stress
assumption fails because of the presence of high stress gradients near the crack tip and
a state-of-plane strain actually exists along most part of the crack front. The knowl-
edge of the 3-D nature of all through-the-thickness cracks is important in LEFM.
In Chapter 4, a section is devoted to the the 3-D effect on the variation of stress
intensity along the crack front.

Under static Mode I loading, experimental results indicate that the direction of
crack extension is self-similar. As a result, in determining Mode I fracture toughness
of a solid, the crack extension direction is not an issue. The situation is not as clear
if the body is subjected to combined loads or dynamic loads. Of course, if the body
is an anisotropic solid such as a fiberous composite, the answer to the question of
cracking direction is not as simple and is not readily available in general. In view
of this constraint, we only consider isotropic brittle solids in Chapter 5. The focus
is on the prediction of crack extension direction. From a learning point of view, it is
interesting to follow a number of different paths of thinking taken by some earlier
researchers in the effort to predict the cracking direction.

Chapters 6 and 7 present the result of the effort in extending the LEFM to treat
fracture in elastic-plastic solids. In Chapter 6, plastic zones near the crack tip for the
three fracture modes are analyzed. Several popular and simple methods for estimat-
ing the crack tip plastic zone size are covered. The initial effort in taking plasticity
into account in fractures was proposed by Irwin who suggested using an effective
crack length to account for the effect of plasticity. Later, the idea was extended to
modeling the so-called R-curve during stable crack growth. Another approach that
uses the J-integral derived based on deformation plasticity theory to model the crack
tip stress and strain fields (the HRR field) also has many followers. In addition to
Irwin’s adjusted crack length and the J-integral approach, crack growth modeled by
crack tip opening displacement (CTOD or CTOA) is also discussed in Chapter 7.

Interfaces between dissimilar solids are common in modern materials and struc-
tures. Interfaces are often the weak link of materials and structures and are the likely
sites for crack initiation and propagation. Interfacial cracks have many unique phys-
ical behaviors that are not found in homogeneous solids. However, surprisingly, the
development of fracture mechanics for interfacial cracks has followed exactly the
same path as LEFM. In other words, fracture mechanics for interfacial cracks is all
centered on the crack tip stress field. The only difference is in the violently oscilla-
tory behavior of the crack tip stress field of interfacial cracks. Chapter 8 presents a



Preface

thorough derivation of the crack tip stress and displacement fields. Attention is also
focused on the significance of stress oscillation at the crack tip and the nonconvergent
nature of the energy release rates of the individual fracture modes.

The cohesive zone model (CZM) has become a popular finite element-based tool
for modeling fracture in solids. CZM is often considered by some as a more real-
istic form of fracture mechanics because it does not employ the idealized singular
stresses. Although there are fundamental differences between the two concepts, the
purposes of the two are the same. Therefore, it is reasonable to include CZM in
this book. In Chapter 9 we make an effort to present the basic formulation of CZM,
especially the cohesive traction law. Instead of covering examples of applications of
the cohesive zone model, we place greater emphasis on the logic in the formulation
of CZM.

Chapter 10 contains brief and condensed presentations of three additional topics,
namely, anisotropic solids, nonhomogeneous solids, and dynamic fracture. The rea-
son for including these three topics in this textbook is, perhaps, just for the sake of
completeness. For each topic, the coverage is quite brief and with a limited scope and
does not warrant a full chapter.

C.T. Sun
Z.-H. Jin
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CHAPTER

Introduction

1.1 FAILURE OF SOLIDS

Failure of solids and structures can take various forms. A structure may fail without
breaking the material, such as in elastic buckling. However, failure of the material in
a structure surely will lead to failure of the structure. Two general forms of failure in
solids are excessive permanent (plastic) deformation and breakage. Plasticity can be
viewed as an extension of elasticity for decribing the mechanical behavior of solids
beyond yielding. The theory of plasticity has been studied for more than a century
and has long been employed for structural designs. On the other hand, the latter form
of failure is usually regarded as the strength of a solid, implying the total loss of load-
bearing capability of the solid. For brittle solids, this form of failure often causes the
body under load to break into two or more separated parts.

Unlike plasticity, the prediction of the strength of solid materials was all based
on phenomenological approaches before the inception of fracture mechanics. Many
phenomenological failure criteria in terms of stress or strain have been proposed and
calibrated against experimental results. In the commonly used failure criteria, such
as the maximum principal stress or strain criterion, a failure envelope in the stress
or strain space is constructed based on limited experimental strength data. Failure is
assumed to occur when the maximum normal stress at a point in the material exceeds
the strength envelope, that is,

o1 = Of

where o1 (> 0) is a principal stress and oy is the tensile strength of the solid. The
failure envelope has also been modified to distinguish the difference between tensile
and compressive strengths and to account for the effects of stress interactions.

In general, the classical phenomenological failure theories predict failure of engi-
neering materials and structures with reasonable accuracy in applications where the
stress field is relatively uniform. These theories are often unreliable in the presence of
high-stress gradients resulting from cutouts. Moreover, there were many premature
structural failures at stresses that were well below the critical values specified in the
classical failure theories.
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