DIMACS

Series in Discrete Mathematics
and Theoretical Computer Science

Volume 68

Algebraic Coding Theory
and Information Theory

DIMACS Workshop
Algebraic Coding Theory and Information Theory
December 15-18, 2003
Rutgers University
Piscataway, New Jersey

A. Ashikhmin
A. Barg
Editors

AIF100%

American Mathematical Society



DIMACS

Series in Discrete Mathematics
and Theoretical Computer Science

Volume 68

Algebraic Coding Theory
and Information Theory

DIMACS Workshop
Algebraic Coding Theory and Information Theory
December 15-18, 2003
Rutgers University
Piscataway, New Jersey

A. Ashikhmin
A. Barg
Editors

Center for Discrete Mathematics
and Theoretical Computer Science
A consortium of Rutgers University, Princeton University,
AT&T Labs-Research, Bell Labs (Lucent Technologies),
NEC Laboratories America, and Telcordia Technologies
(with partners at Avaya Labs, HP Labs, IBM Research,
Microsoft Research, and Stevens Institute of Technology)

American Mathematical Society



This DIMACS volume contains papers presented at the workshop on “Algebraic Cod-
ing Theory and Information Theory” held at the DIMACS Center, Rutgers University,
Piscataway, New Jersey in December 2003.

2000 Mathematics Subject Classification. Primary 94A24, 94A29, 94B15, 94B25, 94B35,
94B70.

Library of Congress Cataloging-in-Publication Data

Algebraic coding theory and information theory : DIMACS workshop, algebraic coding theory
and information theory, December 15-18, 2003, Rutgers University, Piscataway, New Jersey /
A. Ashikhmin, A. Barg, editors.
p. cm. — (DIMACS series in discrete mathematics and theoretical computer science,

ISSN 1052-1798 ; v. 68)

Includes bibliographical references.

ISBN 0-8218-3626-9 (alk. paper)

1. Information theory in mathematics—Congresses. 2. Coding theory—Congresses. 3. Alge-
braic logic—Congresses. 1. Ashikhmin, A. (Alexei), 1966— II. Barg, Alexander, 1960-
II1. Series.

QA10.4.A44 2005
003’.54—dc22 2005047070

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permissionQams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

© 2005 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years
after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 10 09 08 07 06 05



Algebraic Coding Theory
and Information Theory



Foreword

A workshop on Algebraic Coding Theory and Information Theory was held
on December 15-18, 2003 at Rutgers University. We would like to express our
appreciation to Alexei Ashikhmin, Alexander Barg and Iwan Duursma for their
efforts to organize and plan this successful conference.

The workshop was part of the 2001-2005 Special Focus on Computational In-
formation Theory and Coding. We extend our thanks to Robert Calderbank, Chris
Rose, Amin Shokrollahi, Emina Soljanin, and Sergio Verdu for their work as special
focus organizers.

The workshop brought together theoreticians and practitioners working on alge-
braic coding theory and information/communications theory, with an emphasis on
establishing links between these areas. The main themes of the workshop included
linear channel coding, graph-theoretic ideas as they apply to codes and lattices,
Reed-Solomon codes, and considerations involving capacity. These are all major
themes in current research in algebraic coding theory.

DIMACS gratefully acknowledges the generous support that makes these pro-
grams possible. Special thanks go to the National Science Foundation, the New
Jersey Commission on Science and Technology, and to DIMACS partners at Rut-
gers, Princeton, AT&T Labs—Research, Bell Labs, NEC Laboratories America, and
Telcordia Technologies, and affiliate partners Avaya Labs, HP Labs, IBM Research,
Microsoft Research, and Stevens Institute of Technology.

Fred S. Roberts
Director

Robert Tarjan
Co-Director for Princeton
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Preface

Recent years have witnessed an increased interest in the study of problems
in theoretical communication whose solution relies on the synergy of methods of
coding and information theory. The present volume collects papers presented at
or inspired by the workshop “Algebraic Coding Theory and Information Theory”
held at DIMACS, Rutgers University, Piscataway, New Jersey in December 2003.
The workshop was part of a 4-year Special Focus on Computational Information
Theory and Coding held by DIMACS and supported by the NSF. The volume
opens with the articles of G. Caire et al. and G. I. Shamir that employ diverse
ideas from linear channel coding in designing new methods of universal lossless
data compression. The next four papers (by K. W. Shum and I. F. Blake, A. Barg
and G. Zémor, M. R. Sadeghi and D. Panario, and J. S. Yedidia) are devoted to
the use of graph-theoretic ideas in construction and decoding of codes and lattices.
M. El-Khamy and R. J. McEliece study optimal multiplicity assignment in soft-
decision list decoding algorithms of Reed-Solomon codes. The papers by S. Litsyn
and A. Shpunt and G. Kramer and S. Savari are devoted to capacity results in
various transmission scenarios. Finally, the paper by R. G. Cavalcante et al. puts
forward a new approach to the design of signal constellations based on allocations
of signal points on surfaces.

We are very grateful to the DIMACS Center for providing financial and organi-
zational support for the workshop. In the initial stages of the workshop preparation
we were helped by Iwan Duursma of the University of Illinois at Urbana-Champaign
to whom we express our sincere gratitude.

Alexei Ashikhmin
Math. Research Dept. of ECE

Bell Labs, Lucent Tech- University of Maryland

nologies
College Park, MD 20742
Murray Hill, NJ 07974 asar‘;ggurjg =

aea@lucent.com

Alexander Barg
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Fountain Codes for Lossless Data Compression
Giuseppe Caire, Shlomo Shamai, Amin Shokrollahi, and Sergio Verdu

ABSTRACT. This paper proposes a universal variable-length lossless compres-
sion algorithm based on fountain codes. The compressor concatenates the
Burrows-Wheeler block sorting transform (BWT) with a fountain encoder,
together with the closed-loop iterative doping algorithm. The decompressor
uses a Belief Propagation algorithm in conjunction with the iterative dop-
ing algorithm and the inverse BWT. Linear-time compression/decompression
complexity and competitive performance with respect to state-of-the-art com-
pression algorithms are achieved.

1. Introduction

Noiseless data compression is a key information technology used in innumerable
data storage and transmission applications ranging from computer operating sys-
tems to modems to lossy compression standards. Although the state-of-the-art has
reached a certain level of maturity with data compression algorithms that asymp-
totically attain the fundamental information theoretic limits with linear computa-
tional complexity, they suffer from several shortcomings when used in packetized
noisy channels. Mainly for this reason, no payload compression is currently imple-
mented in third-generation standards for high-speed wireless data transmission.

It is known that linear fixed-length encoding can achieve for asymptotically
large blocklength the minimum achievable compression rate for memoryless sources
[1] and for arbitrary (not necessarily stationary/ergodic) sources [2].

After initial attempts [3, 4, 5] to construct linear lossless codes were nonuni-
versal, limited to memoryless sources and failed to reach competitive performance
with standard data compression algorithms, the interest in linear data compression
waned. Recently [6, 7, 8] came up with a universal lossless data compression algo-
rithm based on irregular low-density parity-check codes which has linear encoding
and decoding complexity, can exploit source memory and in the experiments for
binary sources presented in [6, 7, 8] showed competitive performance with respect
to standard compressors such as gzip, PPM and bzip.

The scheme of [6, 7, 8] was based on the important class of sparse-graph error
correcting codes called low-density parity check (LDPC) codes. The block-sorting

1991 Mathematics Subject Classification. Primary 68P30, 94A29; Secondary 94A45, 62B10.

Key words and phrases. Noiseless Data Compression, Universal algorithms, Error Correcting
Codes, Source Coding, Sources with Memory, Block Sorting Transform.

This research was partially supported by NSF Grant CCR-0312879.

© 2005 American Mathematical Society



2 G. CAIRE, S. SHAMAI, A. SHOKROLLAHI, AND S. VERDU

FIGURE 1. Compression/Decompression Scheme for Noiseless Channel

transform (or Burrows-Wheeler transform (BWT)) [9] shown in Figure 1 is a one-to-
one transformation, which performs the following operation: it generates all cyclic
shifts of the given data string and sorts them lexicographically. The last column of
the resulting matrix is the BWT output from which the original data string can be
recovered, knowing the BWT index which is the location of the original sequence
in the matrix. The BWT shifts redundancy in the memory to redundancy in the
marginal distributions. The redundancy in the marginal distributions is then much
easier to exploit at the decoder as the decoding complexity is independent of the
complexity of the source model (in particular, the number of states for Markov
sources). The output of the BWT (as the blocklength grows) is asymptotically
piecewise i.i.d. for stationary ergodic tree sources. The length, location, and dis-
tribution of the i.i.d. segments depend on the statistics of the source. The existing
universal BWT-based methods for data compression generally hinge on the idea of
compression for a memoryless source with an adaptive procedure that learns im-
plicitly the local distribution of the piecewise i.i.d. segments, while forgetting the
effect of distant symbols.

In the data compression algorithm of [6, 7], the compression is carried out
by multiplication of the Burrows-Wheeler Transform of the source string with the
parity-check matrix of an error correcting code. Of particular interest are LDPC
codes since the belief propagation (BP) decoder is able to incorporate the time-
varying marginals at the output of the BWT in a very natural way. The nonidentical
marginals produced at the output of the BWT have a synergistic effect with the
BP algorithm which is able to iteratively exploit imbalances in the reliability of
variable nodes. The universal implementation of the algorithm where the encoder
identifies the source segmentation and describes it to the decompressor is discussed
in [8].

An important ingredient in the compression scheme of [6, 7, 8] is the ability
to do decompression at the compressor. This enables to tune the choice of the
codebook to the source realization and more importantly it enables the use of the
Closed-Loop Iterative Doping (CLID) algorithm of [6, 2]|. This is an efficient algo-
rithm which enables zero-error variable-length data compression with performance
which is quite competitive with that of standard data compression algorithms.
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In this paper, instead of adopting irregular low-density parity check codes of
a given rate approximately matched to the source we adopt a different approach
based on rateless fountain codes. This class of codes turns out to be more natural
for variable-length data compression applications than standard block codes and
achieves in general comparable performance to the LDPC-based scheme of [6, 7, 8].

The rest of the paper is organized as follows. Section 2 reviews the main fea-
tures of fountain codes for channel coding. Section 3 gives a brief summary of
the principle of belief propagation decoding which is common to both channel and
source decoding. Our scheme for data compression with fountain codes is explained
in detail in Section 4 in the setting of nonuniversal compression of binary sources.
For further background on linear codes for data compression and the closed-loop
iterative doping algorithm the reader is referred to [2]. The issues related to im-
plementation with nonbinary alphabets are discussed in Section 5, while the mod-
elling module necessary for universal application is discussed in Section 6. Section
7 shows several experiments and comparisons of redundancy with off-the-shelf data
compression algorithms run with synthetic sources.

2. Fountain Codes for Channel Coding

Fountain codes [10, 11] form a new class of sparse-graph codes designed for
protection of data against noise in environments where the noise level is not known
a-priori. To achieve this, a fountain code produces a potentially limitless stream of
output symbols for a given vector of input symbols. In practical applications, each
output symbol is a linear function of the input symbols, and the output symbols are
generated independently and randomly, according to a distribution which is chosen
by the designer. The sequence of linear combinations of input symbols is known
at the decoder. For example, they can be generated by pseudorandom generators
with identical seeds.

The overhead of the decoding algorithm for a fountain code over a given commu-
nication channel is measured as the fraction of additional output symbols necessary
to achieve the desired residual error rate. Here, the phrase “additional” is meant
to be with respect to the Shannon limit of the underlying channel.

The decoding process for fountain codes is as follows: the receiver collects
output symbols and estimates for each received output symbol the amount of infor-
mation in that symbol. For example, when output symbols are bits, this measure
of information can be obtained from the log-likelihood ratio (LLR) of the received
bit. If this ratio is A, then the empirical mutual information between the informa-
tion symbol and its LLR equals 1 — h(p), where p = 1/(1 + exp(\)). The decoder
stops collecting output bits as soon as the accumulated information carried by the
observed channel outputs exceeds (1 4+ w)k, where w is the overhead associated
with the fountain code, and k is the number of input symbols. Then the decoder
uses its BP decoding algorithm to recover the input symbols from the information
contained in the output symbols.

If the amount of information in the received output symbols is unknown but the
channel is known to be memoryless stationary with capacity C'(\) parameterized in
the single output LLR A, then decoding of fountain codes can be accomplished as
follows: the decoder starts with an optimistic guess A; of the channel parameter,
collects an appropriate number of output symbols n; such that k/n; = C(A\1) — 4,
where § > 0 is some positive rate margin that enforces successful decoding with
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high probability, and applies BP decoding based on the guess A;. In case the BP
decoder is unsuccessful, a predetermined number of additional output symbols is
collected such that the total number of output symbols is ng, and the BP decoding
is applied to the new graph using LLR Ay = C~1(k/n2+6). In case the BP decoder
is unsuccessful, the same process is repeated using n3 > ns output symbols and so
on, until decoding is successful. In practice, instead of resetting the BP decoder at
each new decoding attempt and especially if the initial guess A; is likely to be not
far from the true channel parameter, it might be more convenient to keep the same
BP decoder running while incorporating the additional collected output symbols.

Discovered by Michael Luby [10], LT-codes are one of the first classes of effi-
cient fountain codes for the erasure channel. An extension of this class of codes is
the class of Raptor codes [12]. These classes of codes are very well suited for solving
the compression problem, because the compression algorithm translates to a chan-
nel coding problem for a discrete memoryless channel with time-varying transition
probability matrix which depends on the source. In applications, it is undesirable
to tune the choice of the code to the sequence of transition probabilities, as in uni-
versal applications they are not known beforehand. In this case a fountain code is
more amenable for universal implementation than other classes of efficient channel
codes, such as irregular LDPC codes [13], mainly because a single code can be used
regardless of the source rate.

For ease of exposition we concentrate on binary fountain codes. Let k£ be a
positive integer, and let D be a distribution on F5. A Fountain Code ensemble with
parameters (k, D) has as its domain the space F of binary strings of length k, and as
its target space the set of all sequences over Fy, denoted by FY. Formally, a Fountain
Code ensemble with parameters (k, D) is a linear map F5 — F) represented by an
oo X k matrix where rows are chosen independently with identical distribution D
over FX. The blocklength of a Fountain Code is potentially infinite, but in our data
compression applications we will solely consider truncated Fountain Codes with a
number of coordinates which is tailored to the source realization.

The symbols produced by a Fountain Code are called output symbols, and the
k symbols from which these output symbols are calculated are called input symbols.
The input and output symbols could be elements of Fy, or more generally the
elements of any finite dimensional vector space over Fo. In this paper, we are
primarily concerned with Fountain Codes over the field Fo, in which symbols are
bits.

A special class of Fountain Codes is furnished by LT-Codes [10]. In this class,
the distribution D has a special form described in the following. Let (Q,...,Qk)
be a distribution on {1,...,k} so that ; denotes the probability that the value
i is chosen. Often we will denote this distribution by its generator polynomial
Qz) = Zle Qz*. The distribution Q(z) induces a distribution on F% in the
following way: For any vector v € F5 the probability of v is §2,,/ (:}), where w is
the Hamming weight of v. Abusing notation, we will denote this distribution in the
following by ©2(z) again. An LT-code is a Fountain code with parameters (k, Q(x)).

The decoding graph of length n of a fountain code with parameters (k,(x))
is a bipartite graph with k nodes on one side (called input nodes, corresponding to
the input symbols) and n nodes on the other side (called output nodes). The output
nodes correspond to n output symbols collected at the output of the channel. The
decoding graph is the Tanner graph of the linear encoder IF'ZC — [F5 obtained by
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restricting the fountain encoder mapping to those n components actually observed
at the output.

A raptor code [12] performs a pre-coding operation with a linear code (e.g., an
LDPC code) prior to using an LT-code. Without a pre-coder the average degree
of an LT-coder needs to grow at least logarithmically in the length of the input to
guarantee a small error probability, since otherwise there would exist input symbols
that are not present in any of the linear equations generating the output symbols.
The pre-code lowers the error floor present in an LT-code with small average degree.

3. Belief Propagation Decoding

In this section we give a description of the BP algorithm that is used in the
decoding process of LT codes. The algorithm proceeds in rounds. In every round
messages are passed from input nodes to output nodes, and then from output nodes
back to input nodes. The message sent from the input node ¢ to the output node
w in the ¢th round of the algorithm is denoted by mfi),, and similarly the message
sent from an output node w to an input node ¢ is denoted by mff)L These messages
are scalars in R := R U {#00}. We will perform additions in this set according to
the following rules: a + oo = oo for all a # —o0, and a — 00 = —oo for all a # oco.
The values of co — 0o and —oo + 0o are undefined. Moreover, tanh(oo/2) := 1, and
tanh(—o00/2) := —1.

Every value Y received from the channel has a log-likelihood ratio defined as
In(Pr[Y = 0]/Pr[Y = 1]).

For every output node w, we denote by Z, the corresponding log-likelihood
ratio.

In round 0 of the BP algorithm, the output nodes send the value 0 to all their
adjacent input nodes. Thereafter, the following update rules are used to obtain the
messages passed at later rounds:

) (€]
My i Zw mL',w
(3.1) tanh( 5 > = tanh (7> . l l tanh( 5 > ;

VF#e
(3:2) ol = 3l

w!Fw

where the product is over all input nodes adjacent to w other than ¢, and the sum
is over all output nodess adjacent to ¢ other than w, and £ > 0.

After running the BP-algorithm for m rounds, the log-likelihood of each input
symbol associated to node ¢ can be calculated as the sum )" m‘(ﬂ), where the sum is
over all the output nodes w adjacent to . In cases where the pre-code of the Raptor
code is decoded separately from its LT-code, one may gather the log-likelihood of
the input symbols, and run a decoding algorithm for the pre-code (which may itself
be the BP algorithm). In that case, the prior log-likelihoods of the inputs are set
to be equal to the calculated log-likelihoods according to (3.1).

In data compression applications, the CLID algorithm introduced in [6] runs BP
at the encoder and supplies to the decoder the value of the lowest reliability symbol
at certain iterations until successful decoding is achieved. Since the decoder runs
an identical copy of the BP iterations, it knows the identity of the lowest reliability
symbol, without the need to communicate this information explicitly. The symbols
supplied by the CLID algorithm are referred to as doped symbols.
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4. Data Compression with Fountain Codes

Fountain Codes can be applied to the problem of data compression using the
methods described in [2, 6, 7, 8]. In this section we discuss three variants of this
approach that use LT-Codes in the setting of nonuniversal compression of binary
sources.

4.1. Raptor-code fountain approach. In this approach we use as data com-
pressor the encoder of a raptor code, and as decompressor the decoder of a raptor
code incorporating the statistics of the source. For a fountain application where
a plurality of receivers obtain erased versions of the broadcast data with erasure
rates that are unknown at the transmitter, this approach is able to carry out joint
source-channel encoding-decoding effectively, both taking into account the redun-
dancy of the source and offering protection against channel erasures. If the source
has memory and its statistics are known to the receiver, it is easy to adapt the
BWT-based method for fountain applications. In the universal case it is necessary
to convey reliably the model (Section 6) to the receivers (using a raptor code for
example). In applications where a systematic fountain code is used to send uncom-
pressed redundant data, backward compatibility with receivers that do not do any
data decompression is achievable using the method of [14].

In conventional (non-fountain) applications with one encoder and one decoder,
the approach of this subsection can also be used. In this case, it is necessary to
truncate the semiinfinite sequence of compressed bits at the compressor. In a pure
compression application where no robustness against channel noise is required, the
decompressor can be run at the encoder and the output sequence is truncated as
soon as the BP converges to the true source realization. In those unlikely source
realizations in which this method offers no compression, the source realization can
be sent uncompressed. As it can be expected (and we will see below) this method is
not competitive in terms of performance with the CLID-based approach explained
in Section 4.4. An alternative to using a raptor code in this setting is to puncture
a given code increasingly until the decoder is unable to reconstruct the original
source sequence. This is the “decremental redundancy” approach of [15].

In noisy channel applications, the truncation is not carried out as soon as the
BP converges. Instead, a number of extra parity check bits are produced in order to
cope with the channel noise. For a given output rate, the interesting performance
measure is the block error rate as a function of the channel noise level. If the code
were a true linear random code and the decoder were maximum a posteriori, then
asymptotically it would be possible to achieve an overall coding rate (channel bits/
source bits) equal to the source entropy divided by the channel capacity.

4.2. LT-CLID direct approach. For simplicity we limit here our discussion
to the compression of a block of k£ binary symbols (1, ..., z) independently drawn
from a binary source with bias p.

As an alternative to the pre-code of the raptor code, we could envision reliance
on CLID to provide good performance in conjunction with an LT code used in much
the same way as the LDPC code used in [2, 8]: m output bits are generated by the
encoder of a (k,Q(xz)) LT code, and d bits are generated by the CLID algorithm.
The number of bits generated by the CLID algorithm is sufficient to result in
successful decoding of the & input symbols under the assumption that every symbol
is 1 with probability p. This method resembles the method of [6] with the difference
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that the check nodes of the LDPC code have a degree distribution equal to Q(x),
and the variable nodes have a binomial degree distribution. If the number of edges
in the graph is large, this distribution is close to the Poisson distribution with mean
am/k, where « is the average degree of the distribution Q(z). In particular, the
fraction of variable nodes not covered by any edge in the graph is close to e~*™/k,
This means that the number of doped symbols in this construction is on average
more than ke~®™/* and that the number of output symbols of the compressor
is on average more than k (e’“m/ k+m/ k)l. A necessary condition to achieve an
output length within distance ¢ from the Shannon limit is

(4.1) m/k < h(p) + & — e~ ™/

On the other hand, in order for decoding to be successful the subgraph containing
all k(1 —e~2™/¥) covered variable nodes and the m output nodes must correspond
to a linear code of rate not smaller than h(p). Hence, a second necessary condition
is given by

(4.2) m/k > h(p)(1 — e~ *™/k)

Letting m/k = z € [0, 1], the condition imposed on « and ¢ for given h(p) by (4.1)
and (4.2) is that the root of the equation h(p)(1 — e~ **) = z must be smaller than
the largest root of the equation h(p) + 4§ —e™** = z.

A potential shortcoming of this method (which motivates the consideration
of the alternative method in Section 4.3) is that sparse-graph codes with check
degree distribution Q(z) and variable degree Poisson distribution are known to
perform poorly under iterative decoding on the erasure channel and other symmetric
channels.

4.3. Two-stage approach. In this subsection we describe the principle of a
different method of using LT-codes that is much better suited for the data compres-
sion application. The detailed description of the algorithm can be found in Section
4.4.

We calculate from the input symbols (z1,...,z) a vector of intermediate sym-
bols (y1,...,yx) through a linear invertible k£ x k£ matrix G:

(43) (y17~--7yk)T:G_l(xla"'vxk)T

Next, using the intermediate symbols we calculate m output symbols (Zg11, ..., Tk4m)
according to a distribution Q(z).2 These m output symbols, together with the
doped symbols obtained from the closed-loop iterative doping algorithm consti-
tute the output of the compressor; hence, their total number should be as close as
possible to kh(p).

The Tanner graph on which the BP is run takes the form shown in Figure 2: a
bipartite graph with k intermediate nodes (corresponding to the intermediate sym-
bols) on one side and k input and m output nodes on the other side, corresponding
to the k input and m output symbols, respectively. The variable nodes in that
graph are indicated by circles in Figure 2. The invertible matrix G is chosen as

LAll these numbers are only estimates due to the approximation of the binomial distribution
with the Poisson distribution; the real numbers are very close to these estimates.

2The choice of Q(z) is crucial for performance and its specific expression is given at the end
of the section.
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a random realization so that the degree distribution of the input nodes is Q(z).?
In this way, the degree distribution of both the input and output nodes (i.e., all
nodes on the left in the graph of Figure 2) is equal to Q(z). Notice that the re-
sulting graph can be interpreted as the decoding graph of a (k, Q2(x)) LT code with
input symbols (y1,...,yr) and output symbols (z1, ..., Zk+m), observed through a
non-stationary BSC with transition probability p over the first £ components and 0
over the second m components. The initial reliabilities (absolute value of the initial
LLRs) of (y1,...,Yx), (z1,...,2k) and (Tk41,. .., Tk+m) are 0, |log((1 —p)/p)| and
~+o00, respectively.

Even though the matrix G is sparse, its inverse is generally dense. This has
two consequences: the intermediate symbols behave like random coin flips, and the
computation of (4.3) is, in principle, quadratic in k. In order to compute (4.3) in
linear time, G should be such that the linear system G(y1, . ..,yx)T = (z1,...,2%)T
can be solved by direct elimination of one unknown at a time. Equivalently, the
BEC message-passing decoding algorithm applied to the Tanner graph of the parity
equation G(y1,...,yx)" + (z1,...,2x)T = 0 must terminate (i.e., it recovers all
intermediate symbols (y1,...,Yx)).

4.4. Compressor and Decompressor. The basic scheme of Figure 1 is used
where the syndrome computing block consists of the scheme presented in Section
4.3. The modeling algorithm is described in Section 6.

For simplicity we first describe the special case of the algorithm for binary data.

(1) After block sorting the original k-data vector, we obtain a block of symbols
(:El, 5% 3 ,.’Iik).

(2) An intermediate block (y1,¥s, ..., yx) of symbols is calculated by (4.3) (in
practice, this is accomplished via message-passing).

(3) A vector of m symbols (Zx41,...,Tktm) 1S generated from (yi,...,Yk)
through encoding with an LT-code with parameters (k,Q(x)). Together
with the doped bits generated as indicated below, (Zgi1,. .., Trtm) forms
the payload of the compressed data.

(4) A bipartite graph (Figure 2) is set up between the nodes corresponding to
(y1,---,Yk), and the nodes corresponding to (z1,...,Zx+m). The edges
in this graph are defined as follows: for all 7, there is an edge from z; to
all the bits among (y1, ..., yx) of which z; is the addition.

(5) The BP algorithm is applied to the graph created in the previous step.
The objective of this BP algorithm is to decode the symbols (y1,...,yx)
using the full knowledge of the symbols (zx+1, ..., Zk+m) and the a priori
marginal source probabilities {P(z; = 1) = p; : i = 1,...,k}. For ¢ =
1,...k, the LLR of the bit z; (unavailable to the decoder) is set to log((1—
p:)/pi). The marginal probabilities p; are either known (in a non-universal
setting) or estimated from the source sequence itself by the source modeler
illustrated in Section 6. The nodes corresponding to (yi,...,yx) have
initially zero reliability.

(6) During the BP-algorithm, the CLID algorithm of [6, 2] is applied. In
every ¢-th round of the iteration the intermediate bit y;, with the smallest
reliability is marked, included in the payload, and its log-likelihood is set

3For example, G can be constructed row-by-row, such that every row is sampled from Q(x)
subject to the constraint that all the rows created so far are linearly independent.



