CURRENT THERAPY IN HEMATOLOGYONCOLOGY 1983-1984

MICHAEL C. BRAIN, D.M., F.R.C.P., F.R.C.P. (C)

PETER B. McCULLOCH, M.D., F. R.C.P. (C)

CURRENT THERPY IN HEMPTOLOGY-ONCOLOGY 1983-1984

MICHAEL C. BRAIN, D.M., F. R.C.P., F. R.C.P. (C)

Professor of Medicine
McMaster University Faculty of Health Sciences
Hamilton, Ontario, Canada

PETER B. McCULLOCH, M.D., F. R.C.P. (C)

Associate Professor of Medicine
McMaster University Faculty of Health Sciences
Hamilton, Ontario, Canada

Publisher:

B.C. Decker Inc.

3228 South Service Road Burlington, Ontario L7N 3H8

North American and worldwide sales and distribution:

The C.V. Mosby Company 11830 Westline Industrial Drive Saint Louis, Missouri 63141

In Canada:

The C.V. Mosby Company, Ltd 120 Melford Drive

Toronto, Ontario M1B 2X5

MICHAEL C BRAG C M LELCE LERG

HELL THE

PETER 8, MAOULLOCH, M.O.L. R

anting to the land of the line

Current Therapy in Hematology-Oncology 1983-1984

ISBN 0-941158-05-5

© 1983 by B.C. Decker Incorporated under the International Copyright Union. All rights reserved. No part of this publication may be reused or republished in any form without written permission of the publisher.

Library of Congress catalog card number:

10 . 1

> HONORI * ANTOPHIA IN THE CHARLE FULL OF B The C.V. MOSSY COMPANY * Sections * Totals * D

CONTRIBUTORS

DONALD ARMSTRONG, M.D.

Professor of Medicine, Cornell University Medical College; Chief, Infectious Disease Service; Director, Microbiology Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York

Viral Infections, Fungal Infections

GROVER C. BAGBY, JR., M.D.

Associate Professor of Medicine, Oregon Health Sciences University; Director, E. E. Osgood Memorial Center; Clinical Investigator, Veterans Administration Medical Center, Portland, Oregon

The Preleukemic Syndrome (Hemopoietic Dysplasia)

JAMES E. BALOW, M.D.

Chief, Clinical Nephrology Service, Senior Investigator, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

Tumor Lysis Syndrome

DANIEL E. BERGSAGEL, M.D., D.PHIL.

Professor of Medicine, University of Toronto; Chief of Medicine, Princess Margaret Hospital, Toronto, Ontario Monoclonal Gammopathy and Plasma Cell Neoplasms

ERNEST BEUTLER, M.D.

Chairman, Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California

Glucose-6-Phosphate Dehydrogenase Deficiency in Drug-Induced Hemolysis,

Gaucher's Disease

KARL G. BLUME, M.D., F.A.C.P.

Director, Department of Hematology and Bone Marrow Transplantation, City of Hope National Medical Center, Duarte, California

Bone Marrow Transplantation

MICHAEL C. BRAIN, D.M., F.R.C.P., F.R.C.P.(C)

Professor of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada Idiopathic Myelofibrosis and Myelophthisic Anemia, Thrombotic Thrombocytopenic Purpura and the Hemolytic Uremic Syndrome

GEORGE P. BROWMAN, M.D., F.R.C.P.(C)

Assistant Professor, Department of Medicine, McMaster University Faculty of Health Sciences; Medical Oncolo-

gist, Ontario Cancer Foundation, Hamilton, Ontario Head and Neck Cancer: Role of the Medical Oncologist

ELMER B. BROWN, M.D.

Professor of Medicine, Washington University School of Medicine, St. Louis, Missouri Secondary Anemias: The Anemia of Chronic Disease

GEORGE P. CANELLOS, M.D.

Associate Professor of Medicine, Harvard Medical School, Boston, Massachusetts Chronic Granulocytic Leukemia

PAUL P. CARBONE, M.D.

Professor and Chairman, Department of Human Oncology and Director, Wisconsin Clinical Cancer Center; Professor of Medicine, University of Wisconsin Medical School, Madison, Wisconsin

Cancer of the Breast: Adjuvant Therapy

RALPH CARMEL, M.D.

Professor of Medicine, University of Southern California School of Medicine, Los Angeles, California Megaloblastic Anemia

DAVID T. CARR, M.D.

Professor of Medicine, The University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, Houston, Texas

Bronchogenic Carcinoma: Surgical Approach

CEDRIC J. CARTER, M.D.

Assistant Professor of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada Antithrombin-III (AT-III) Deficiency

J. ROBERT CASSADY, M.D.

Professor of Radiation Therapy, Harvard Medical School, Boston, Massachusetts

Systemic Histiocytosis

STEVEN E. COME, M.D.

Assistant Professor of Medicine, Harvard Medical School, Boston, Massachusetts Hodgkin's Disease: Chemotherapy

JOHN H. CROOKSTON, M.D., Ph.D., F.R.C.P.(C)

Professor of Medicine and Pathology, University of Toronto; Hematologist-in-Chief, Department of Laboratory Hematology, Toronto General Hospital, Toronto, Ontario

Autoimmune Hemolytic Anemia Associated with Warm-Reactive Antibodies

WILLIAM H. CROSBY, M.D.

Department of Hematology, Division of Medicine, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, District of Columbia Hypersplenism

BERNARD J. CUMMINGS, M.D.

Associate Professor, Department of Radiology, University of Toronto; Staff Radiation Oncologist, The Princess Margaret Hospital, Toronto, Ontario, Canada Adjuvant Chemotherapy in Gastrointestinal Cancer

JUDAH A. DENBURG, M.D., F.R.C.P.(C)

Assistant Professor of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada Systemic Mastocytosis (Mast Cell Proliferative Diseases)

J. ROBERT CASSADY, M.D.

Professor of Radiation Therapy, Harvard Medical School, Boston, Massachusetts Systemic Histiocytosis

RICHARD CHAMPLIN, M.D.

Assistant Professor of Medicine, Codirector, Transplantation Biology Unit, Division of Hematology-Oncology, University of California Center for Health Science, Los Angeles, California

Aplastic Anemia

RAMONA M. CHAPMAN, M.D.

Director, St. John's Regional Oncology Center, Joplin, Missouri

Emotional Care of the Cancer Patient

SAMUEL CHARACHE, M.D.

Professor of Medicine and Pathology (Laboratory Medicine), Johns Hopkins University School of Medicine, Baltimore, Maryland

Sickle Cell Disease

ROBERT W. COLMAN, M.D.

Professor of Medicine and Thrombosis, Head, Hematology-Oncology Section, Director, Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania

Disseminated Intravascular Coagulation

AMODIO D. DEPETRILLO, M.D.

Associate Professor of Obstetrics and Gynecology, Director, Division of Gynecologic Oncology, McMaster Uni-

versity Faculty of Health Sciences, Hamilton, Ontario Gynecologic Oncology, Ovarian Carcinoma

HARRISON DONNELLY, M.D.

Fellow, Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, New York Viral Infections

VIRGIL F. FAIRBANKS, M.D.

Professor of Medicine and Laboratory Medicine, Mayo Medical School, Rochester, Minnesota Iron Deficiency

ANTHONY S. FAUCI, M.D.

Chief, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland Idiopathic Hypereosinophilic Syndrome

DONALD I. FEINSTEIN, M.D.

Professor of Medicine, Head, Hematology Division, University of Southern California School of Medicine, Los Angeles, California

Acquired Inhibitors of Blood Coagulation

STUART C. FINCH, M.D.

Professor of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers Medical School; Chief of Medicine, Cooper Hospital, University Medical Center, Camden, New Jersey

Agranulocytosis

ROBERT P. GALE, M.D., Ph.D.

Associate Professor of Medicine, Director, Transplantation Biology Unit, Division of Hematology-Oncology, University of California Center for Health Science, Los Angeles, California

Aplastic Anemia

DAVID A. G. GALTON, M.D.

Honorary Director, M.R.C. Leukemia Unit; Professor of Haematological Oncology, Royal Postgraduate Medical School, London, England; Consultant Physician, Hammersmith Hospital, London, England

Chronic Lymphocytic Leukemia

KATHLEEN GEKOWSKI, M.D.

Assistant Professor of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers Medical School; Head, Division of Infectious Disease, Cooper Hospital, University Medical Center, Camden, New Jersey

Agranulocytosis

ROBERT B. GOLBEY, M.D.

Clinical Associate Professor, Department of Medicine, Cornell University Medical College; Attending Physician, Memorial Sloan-Kettering Cancer Center, New York, New York

Testicular Tumors

HARVEY M. GOLOMB, M.D.

Associate Professor of Medicine and Chief, Section of Hematology-Oncology, The University of Chicago, Pritzker School of Medicine, Chicago, Illinois

Non-Hodgkins Lymphoma and Hairy Cell Leukemia

JOEL S. GREENBERGER, M.D.

Assistant Professor, Department of Radiation Therapy, Harvard Medical School, Boston, Massachusetts Systemic Histiocytosis

JOHN W. GYVES, M.D.

Instructor, Internal Medicine Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan

Hypercalcemia

JOHN B. HARLEY, M.D.

Assistant Professor, Department of Medicine, University of Oklahoma Health Sciences Center, Laboratory or Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma

Idiopathic Hypereosinophilic Syndrome

EDWARD S. HENDERSON, M.D.

Professor of Medicine, State University of New York; Chief, Department of Medical Oncology, Roswell Park Memorial Hospital, Buffalo, New York

Acute Lymphocytic Leukemia in Adults

SHARON HENRY, M.D.

Adjunct Attending Physician, Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, New York

Fungal Infections

DONALD J. HIGBY, M.D.

Associate Research Professor of Medicine, State University of New York, School of Medicine, Buffalo, New York

Granulocyte Transfusions

ROBERT S. HILLMAN, M.D.

Professor of Medicine, University of Vermont School of Medicine; Chief, Department of Medicine, Maine Medical Center, Portland, Maine

Refractory Sideroblastic Anemia

JACK HIRSCH, M.D.

Professor and Chairman, Department of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada

Venous Trhomboembolism

RICHARD T. HOPPE, M.D.

Assistant Professor of Radiology, Division of Radiation Therapy, Stanford University, Stanford, California Hodgkin's Disease: Radiation Treatment

RUSSELL D. HULL, M.D.

Associate Professor, Department of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada

Venous Thromboembolism

ERNST R. JAFFE, M.D.

Professor of Medicine, Head, Division of Hematology, Albert Einstein College of Medicine, Bronx, New York Hereditary and Acquired Methemoglobinemia

KHURSHEED N. JEEJEEBHOY, M.B., B.S., Ph.D., F.R.C.P.(C)

Professor of Medicine, University of Toronto; Chief of Gastroenterology, Toronto General Hospital, Toronto, Ontario, Canada

Nutrition in Cancer

R. DEREK T. JENKIN, M.B.

Professor of Radiology, University of Toronto; Director, The Ontario Cancer Foundation, Toronto-Bayview Clinic, Toronto, Ontario, Canda Osteosarcoma

.

CAROL KASPER, M.D.

Associate Professor of Medicine, University of Southern California School of Medicine, Orthopaedic Hospital, Los Angeles, California

Acquired Inhibitors of Blood Coagulation

JOHN G. KELTON, M.D., F.R.C.P.(C)

Associate Professor of Medicine and Pathology, McMaster University Faculty of Health Sciences; Deputy Medical Director, Canadian Red Cross Blood Transfusion Service, Hamilton, Ontario, Canada

Acquired Disorders of Platelet Dysfunction,

Idiopathic Thrombocytopenic Purpura,

Thrombotic Thrombocytopenic Purpura and the Hemolytic Uremic Syndrome

SANFORD B. KRANTZ, M.D.

Professor of Medicine, Director, Division of Hematology, Vanderbilt University School of Medicine; Chief, Hematology Section, Veterans Administration Medical Center, Nashville, Tennessee Pure Red Cell Aplasia

PETER H. LEVINE, M.D.

Chairman, Department of Medicine, Worcester Memorial Hospital; Professor of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts Hemophilia and Allied Conditions

JEFFREY M. LIPTON, M.D.

Assistant Professor of Pediatrics, Harvard Medical School, Boston, Massachusetts

Systemic Histiocytosis

ROBERT B. LIVINGSTONE, M.D.

Professor of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington Lung Cancer: Chemotherapy

ALBERT F. LOBUGLIO, M.D.

Professor of Medicine, Director, Division of Hematology and Oncology, University of Alabama School of Medicine, Birmingham, Alabama Hypercalcemia

SAMUEL E. LUX, M.D.

Professor of Pediatrics, Harvard Medical School; Senior Associate in Hematology-Oncology, Children's Hospital Medical Center and Dana-Farber Cancer Institute, Boston, Massachusetts

Hereditary Spherocytosis and Elliptocytosis

LIONEL A. MANDELL, M.D., F.R.C.P.(C)

Head, Division of Infectious Disease, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada

Bacterial Infection in the Compromised Host

ROBERT J. MAYER, M.D.

Associate Professor of Medicine, Harvard Medical School, Boston, Massachusetts

Hodgkin's Disease: Chemotherapy

PETER B. McCULLOCH, M.D., F.R.C.P.(C)

Associate Professor of Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada Melanoma

WILLIAM C. MENTZER, M.D.

Professor of Pediatrics, Director, Division of Pediatric Hematology-Oncology, University of California, San Francisco, California

Hereditary Hydrocytosis and Xerocytosis

JONATHAN L. MILLER, M.D., PH.D.

Assistant Professor of Clinical Pathology, Director, Coagulation Laboratory, State University of New York, Upstate Medical Center, Syracuse, New York Congenital Disorders of Platelet Function

SARA M. NEELY, M.D.

Fellow, Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Pritzker School of Medicine, Chicago, Illinois

Non-Hodgkins Lymphoma and Hairy Cell Leukemia

JOSEPH F. PAONE, M.D.

Assistant Professor of Surgery, The University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, Houston, Texas

Bronchogenic Carcinoma: Surgical Approach

DONALD PINKEL, M.D.

Professor and Chairman, Department of Pediatrics, Temple University School of Medicine; Director of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania

Acute Leukemia in Childhood

HARVEY D. PREISLER, M.D.

Associate Chief, Department of Medicine A, Roswell Park Memorial Institute, Buffalo, New York Acute Myelocytic Leukemia in Adults

WENDELL F. ROSSE, M.D.

Florence McAlister Professor of Medicine, Chief, Division of Heamtology-Oncology, Duke University School of Medicine, Durham, North Carolina

Paroxysmal Nocturnal Hemoglobinuria

RONALD N. RUBIN, M.D.

Assistant Professor of Medicine (Hematology-Oncology) and Thrombosis, Temple University School of Medicine, Philadelphia, Pennsylvania Fibrinolysis

ZAVERIO M. RUGGERI, M.D.

Associate Director, Hemophilia and Thrombosis Center "Angelo Bianchi Bonomi", University of Milan, Policlinico Hospital, Milan, Italy von Willebrand's Disease

DAVID McR. RUSSELL, M.B.B.S.,

F.R.A.C.P.

Research Fellow in Gastroenterology, Toronto General Hospital, Toronto, Ontario, Canada Nutrition in Cancer

KUMAO SAKO, M.D.

Associate Chief, Department of Head and Neck Surgery and Oncology, Roswell Park Memorial Institute, Buffalo, New York

Thyroid Cancer.

S. GERALD SANDLER, M.D.

Blood Services, National Headquarters American Red Cross; Clinical Professor of Medicine, Georgetown University School of Medicine, Washington, District of Columbia

Deficiency of Vitamin K-Dependent Coagulation Factors

HOWARD I. SCHER, M.D.

Fellow, Medical Oncology, Memorial Sloan-Kettering Cancer Center; Instructor in Medicine, Cornell Medical School, New York, New York

Prostatic Cancer

ALVIN H. SCHMAIER, M.D.

Assistant Professor of Medicine, Thrombosis, and Pathology, Director, Hospital Coagulation Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania

Disseminated Intravascular Coagulation

ALAN D. SCHREIBER, M.D.

Associate Professor of Medicine, University of Pennsylvania School of Medicine; Department of Medicine, Hematology-Oncology Section, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania

Cold Agglutinin Disease

SOL SHERRY, M.D.

Professor and Chairman, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania

Fibrinolysis

MURRAY N. SILVERSTEIN, M.D., Ph.D.

Professor of Medicine, Mayo Medical School; Chairman, Division of Hematology, Mayo Clinic, Rochester, Minnesota

Polycythemia Vera

DONALD G. SKINNER, M.D.

Professor of Surgery, Chairman, Division of Urology, University of Southern California School of Medicine, Los Angeles, California

Cancer of the Bladder

SHERRILL J. SLICHTER, M.D.

Associate Professor of Medicine, University of Washington School of Medicine, Medical Director, Puget Sound Blood Center, Seattle, Washington

Platelet Transfusions

LAWRENCE R. SOLOMON, M.D.

Associate Professor of Medicine, Yale University School of Medicine, West Haven, Connecticut Refractory Sideroblastic Anemia

MARIE J. STUART, M.B., B.S.

Professor of Pediatrics, Co-Director, Pediatric Hematology-Oncology, State University of New York, Upstate Medical Center, Syracuse, New York

Congenital Disorders of Platelet Function

DONALD J. A. SUTHERLAND, M.D.

Associate Professor of Medicine, University of Toronto; Staff Physician, Toronto-Bayview Clinic and Sunnybrook Medical Centre, Toronto, Ontario, Canada Cancer of the Breast: Endocrine Therapy

GEORGE C. TSOKOS, M.D.

Medical Staff Fellow, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

Tumor Lysis Syndrome

WILLIAM N. VALENTINE, M.D.

Professor of Medicine, University of California School of Medicine, Los Angeles, California Hemolytic Anemia due to Deficiencies of Enzymes of Anaerobic Glycolysis and Nucleotide Metabolism

R. L. VERWILGHEN, M.D.

Professor of Hematology, University Hospital, Leuven, Belgium

Nonsideroblastic Refractory Anemia

D. J. WEATHERALL, M.D.

Professor, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, England

Thalassemia

NEAL J. WEINREB, M.D.

Clinical Assistant Professor of Oncology, University of Miami School of Medicine, Miami, Florida Primary and Secondary Erythrocytosis, Relative Polycythemia

JOSEPH M. WHITE, M.D., M.R.C.PATH.

Professor of Haematology, King's College Hospital Medical School, University of London, Denmark Hill, London, England

Abnormal Hemoglobins: Hemoglobinopathies

PETER H. WIERNIK, M.D.

Gutman Professor and Chairman, Department of Oncology, Montefiore Hospital and Medical Center; Head, Divi-

sion of Medical Oncology, Albert Einstein College of Medicine, Bronx, New York Mycosis Fungoides

RICHARD E. WILSON, M.D.

Professor of Surgery, Harvard Medical School; Chief, Surgical Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts Cancer of the Breast: Surgical Management

LAWRENCE C. WOLFE, M.D.

Instructor in Pediatrics, Harvard Medical School; Assistant Director of the Blood Bank, Children's Hospital Medical Center; Associate in Oncology, Dana-Farber

Cancer Institute, Boston, Massachusetts Hereditary Spherocytosis and Elliptocytosis

ALAN YAGODA, M.D.

Attending, Memorial Sloan-Kettering Cancer Center; Associate Professor of Clinical Medicine, Cornell Medical School, New York, New York

Prostatic Cancer

THEODORE S. ZIMMERMAN, M.D.

Department of Immunology and Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California

von Willebrand's Disease

PREFACE

The most rewarding developments in medicine over the past decade or so have been the advances in treatment. Diseases which had been recognized for many years but for which no effective treatments were possible now respond to specific therapy. While this may be true for many fields of medicine advances in treatment in hematology and oncology have been particularly successful, the retention of the term "pernicious anemia" being a therapeutic anachronism. With improvements in diagnosis the challenge facing the physician is now often therapeutic. It may not only be a question of which is the most effective treatment, but how is it best given, and how may the complications that arise from treatment be best managed. The many excellent contributions to this book are evidence of these advances in treatment and patient care.

Hematology and oncology in particular have contributed to, and benefited from, the development and use of chemotherapeutic drugs in the treatment of malignant diseases. The use of these drugs initially often as single agents and more recently in various combinations has stimulated clinical and more basic research. It has resulted in the recognition that accurate staging is critical in the selection of the most appropriate form of treatment (chemotherapy, radiation therapy, surgery, or transplantation). The complications that accompany intensive treatment have been largely overcome by the improvements in antibiotics and by the availability of blood products. It is now widely accepted that the results of treatment can only be objectively assessed by properly controlled clinical trials. Advances in treatment have not diminished the care and consideration that have to be given to the patient and the patient's family during the whole course of an illness.

The shared background, experience and overlap in the practice of the hematologist and medical oncologist, led to the decision to include both topics in a single volume on current therapy. This has necessitated the editors being selective in the topics to be included. In oncology emphasis has been given to the more common tumors and to alternative approaches to their treatment rather than trying to provide comprehensive coverage of all malignant diseases.

The editors wish to express their sincere appreciation to the contributors; to their long-suffering wives; to Mrs. Audrey Moffett for excellent secretarial services; to our publisher Brian Decker and his staff for the many suggestions and actions taken in achieving the rapid publication of a volume of such high quality. The rapid advances in therapy will be met by seeking new contributors to future editions that it is intended will be published every two or three years.

Michael C. Brain Peter B. McCulloch

December, 1982

CONTENTS

Aplastic Anemia	1	Cold Hemagglutinin Disease	38
Pure Red Cell Aplasia	6	Paroxysmal Nocturnal Hemoglobinuria . Wendell F. Rosse	41
Megaloblastic Anemia	10	Sickle Cell Disease	44
Iron Deficiency	14	Abnormal Hemoglobins: Hemoglobinopathies	48
Refractory Sideroblastic Anemia Lawrence R. Solomon, Robert S. Hillman	18	Hereditary and Acquired Methemoglobinemia Ernst R. Jaffe	51
Nonsideroblastic Refractory Anemia R. L. Verwilghen	24	Thalassemia	52
Secondary Anemias: The Anemia of Chronic Disease	27	Hemolytic Anemia Due to Deficiencies of Enzymes of Anaerobic Glycolysis and Nucleotide Metabolism	56
Hereditary Spherocytosis and Elliptocytosis Lawrence C. Wolfe, Samuel E. Lux	30	Glucose-6-Phosphate Dehydrogenase Deficiency in Drug-Induced Hemolysis . Ernest Beutler	58
Hereditary Hydrocytosis and Xerocytosis	33	Primary and Secondary Erythrocytosis	60
William C. Mentzer	33	Relative Polycythemia	62
Autoimmune Hemolytic Anemia Associated With Warm-Reactive Antibodies	35	Agranulocytosis	62

xiv / Contents

Gaucher's Disease Ernest Beutler	67	Mycosis Fungoides Peter H. Wiernik	119
Idiopathic Hypereosinophilic Syndrome John B. Harley Anthony S. Fauci	69	Hodgkin's Disease: Radiation Treatment	120
Polycythemia Vera	72	Hodgkin's Disease: Chemotherapy Steven E. Come, Robert J. Mayer	126
Chronic Granulocytic Leukemia George P. Canellos	73	Systemic Histiocytosis Joel S. Greenberger,	133
Chronic Lymphocytic Leukemia David A. G. Galton	77	J. Robert Cassady, Jeffrey M. Lipton	
Acute Leukemia in Childhood	81	Monoclonal Gammopathy and Plasma Cell Neoplasms Daniel E. Bergsagel	138
Acute Myelocytic Leukemia in Adults Harvey D. Preisler	88	Hypersplenism	145
Acute Lymphocytic Leukemia in Adults . Edward S. Henderson	93	Hemophilia and Allied Conditions Peter H. Levine	147
Bone Marrow Transplantation	99	Von Willebrand's Disease	153
The Preleukemic Syndrome		Theodore 3. Zimmerman	
(Hemopoietic Dysplasia)	103	Deficiency of Vitamin K-Dependent Coagulation Factors S. Gerald Sandler	
Idiopathic Myelofibrosis and Myelophthisic Anemia	109	* 1/3 0.2 1	
Michael C. Brain	103	Acquired Inhibitors of Blood Coagulation	160
Systemic Mastocytosis (Mast Cell Proliferative Diseases)	111	Donald Feinstein	
Donald Rosenthal		Disseminated Intravascular Coagulation Alvin H. Schmaier, Robert W. Colman	164
Non-Hodgkin's Lymphoma and Hairy	115	Nobele W. Comian	
Cell Leukemia	113	Antithrombin-III (At-III) Deficiency Cedric J. Carter	169

Venous Thromboembolism	171	Cancer of the Bladder	225
Therapeutic Fibrinolysis	179	Gynecologic Oncology	230
Sol Sherry		Ovarian Carcinoma	236
Congenital Disorders of Platelet Function	182	Head and Neck Cancer: Role of the Medical Oncologist	241
Acquired Disorders of Platelet Dysfunction	188	Thyroid Cancer	248
Idiopathic Thrombocytopenic Purpura John G. Kelton	191	Melanoma Peter B. McCulloch	253
Thrombotic Thrombocytopenic Purpura and the Hemolytic Uremic Syndrome	193	Osteosarcoma	2 55
John G. Kelton		Lung Cancer: Chemotherapy	259
Adjuvant Therapy for Gastrointestinal Malignancy Bernard J. Cummings	196	Bronchogenic Carcinoma: Surgical Approach	262
Cancer of the Breast: Endocrine Therapy Donald J. A. Sutherland	200	Joseph F. Paone, David T. Carr	
Cancer of the Breast: Adjuvant Therapy Paul P. Carbone	205	Tumor Lysis Syndrome	264
Cancer of the Breast: Surgical Management	208	Hypercalcemia	267
Testicular Tumors	213	Transfusion of Red Cells, Plasma Components, and Plasma Derivatives	271
Prostatic Cancer	218	Granulocyte Transfusions	278

xvi / Contents

Platelet Transfusions	282	Bacterial Infection in the Compromised Host
Nutrition in Cancer	287	Viral Infections
Emotional Care of the Cancer Patient Ramona M. Chapman	289	Fungal Infections

APLASTIC ANEMIA

RICHARD CHAMPLIN, M.D. and ROBERT PETER GALE, M.D., Ph.D.

Aplastic anemia is a life-threatening hematologic disorder characterized by bone marrow failure with pancytopenia and a hypocellular bone marrow. This disease may result from a number of potential pathophysiologic mechanisms. Most cases are associated with absent or defective hematopoietic stem cells. A small number of cases may be attributable to defects in the bone marrow supportive stroma, or to abnormalities of regulatory cells or factors. Recently there has been considerable interest in the role of lymphoid cells and the immune system in the regulation of hematopoiesis and the potential role of immune suppression of hematopoiesis in the pathogenesis of aplastic anemia.

Aplastic anemia may result from exposure to a number of etiologic agents. The most common agents associated with this disease are listed in Table 1. A large number of drugs have been reported to produce bone marrow failure. This may occur as a predictable dose-related toxicity, as with cancer chemotherapeutic agents, or as an unpredictable idiosyncratic event, as with chloramphenicol or phenylbutazone. In addition, aplastic anemia may be caused by a number of toxins or infections and may rarely occur in association with a thymoma or with pregnancy. In 75% of patients with aplastic anemia, a likely etiologic agent cannot be identified and the disease is termed idiopathic.

The prognosis of aplastic anemia depends on a number of factors. The most important factor is the severity of pancytopenia, the reticulocyte count being the most meaningful prognostic indicator. In addition, patients with an indolent presentation—with an interval from first symptoms to diagnosis greater than 4 months—have a better prognosis than those with an abrupt onset of symptoms. In general, the etiology of the aplastic anemia has little prognostic importance. Patients with aplastic anemia related to non-A and non-B hepatitis, however, tend to have a fulminant disease with an extremely poor prognosis.

The treatment of aplastic anemia involves three major components: identification and withdrawal of potential etiologic factors, supportive care with blood product transfusions and management of infections, and therapy designed to restore normal hematopoiesis.

WITHDRAWAL OF POTENTIAL ETIOLOGIC AGENTS

The most direct approach to the treatment of aplastic anemia is to eliminate the causative factor(s). Aplasia is an uncommon complication following contact with any of the agents listed in Table 1 and may develop weeks to months after a brief exposure. In general, the etiology in a given case of aplastic anemia can only be suspected from the clinical history. Nonetheless, hematologic recovery may take place following withdrawal of the etiologic factor, and aplasia is likely to recur upon re-exposure to the offending agent. The aplastic anemia that occurs during pregnancy may improve after therapeutic abortion, and patients with aplastic anemia associated with a thymoma may recover following thymectomy. Unfortunately, a correcta-

TABLE 1 Common Etiologic Agents in Acquired Aplastic Anemia

Drugs

Antibiotics (chloramphenicol, penicillin, cephalosporins, sulfonamides)

Anti-inflammatory agents (phenylbutazone, indomethacin, gold, penicillamine)

Oral hypoglycemic drugs (chloropropamide, tolbutamide) Antineoplastic cytotoxic drugs

Antithyroid drugs, phenothiazines, antimalarials (quinacrine), diuretics (thiazides), antiepileptic drugs

Toxins

Pesticides (gammabenzene hydrochloride, chlorphenothane [DDT])

Aromatic hychocarbon solvents and glues (benzene, toluene, xylene, napthaline)

Dyes, industrial toxins

Infections

Hepatitis, Epstein Barr virus, rubella, Venezuelan equine encephalitis, cytomegalovirus, brucellosis, tuberculosis, toxoplasmosis

Rheumatic and immunologic disorders

Systemic lupus erythematosus, cryoglubulinemia, graftversus-host disease

Paroxysmal nocturnal hemoglobinuria

Radiation

Thymona

Pregnancy

ble etiologic factor can only rarely be identified, and other therapeutic approaches are required to restore normal bone marrow function in most patients.

SUPPORTIVE CARE

Aplastic anemia is characterized by failure of the bone marrow to produce adequate numbers of erythrocytes, platelets, and granulocytes. Each of the elements may be replaced, to an extent, by the transfusions of blood components.

It is generally possible to maintain adequate levels of hemoglobin for many years with transfusions of red blood cells. Erythrocytes should usually be administered as packed red cells, although whole blood or frozen red cells may be required in some circumstances. The major complications of red blood cell transfusions include transfusion reactions, circulatory volume expansion, iron overload, and transmission of infections such as hepatitis. Febrile transfusion reactions are frequently caused by contamination of the red cells by leukocytes and can be minimized by transfusion of washed or leukocyte-poor, packed red cells.

An arequate number of circulating platelets can be initially attained in most patients by transfusions of platelets from unselected donors. Most patients become sensitized to HLA and other antigens present on the transfused platelets, leading to the development of antibodies that impair platelet function and shorten platelet survival. Ultimately the patient may become refractory and not achieve an increment in the platelet count following platelet transfusions. The time to develop antiplatelet antibodies is highly variable and does not correlate well with the number of platelet transfusions. Patients who become refractory to platelet transfusions from unselected donors may respond to platelets from HLA-matched donors. Sensitization may also occur to non-HLA antigens, and some patients become refractory to HLA-matched platelets as well. Splenectomy and immunosuppressive drugs, such as corticosteroids or cytotoxic agents, generally fail to improve the response of sensitized patients to platelet transfusions. Recently, several methods were proposed to detect antiplatelet antibodies and for cross-matching tests to allow selection of compatible donors for platelet transfusions. Unfortunately, these tests are not widely available, and contradictory data regarding their reproducibility and clinical utility have been reported.

Indications for the use of platelet transfusions

must be individualized. Platelet survival is shortened by fever, infection, splenomegaly, disseminated intravascular coagulation, and active bleeding. The requirement for platelet transfusions is determined by the patient's platelet count, clinical status, bleeding tendency, and response to previous platelet transfusions. The risk of spontaneous hemorrhage is directly related to the degree of thrombocytopenia and increases substantially when the platelet count is less than $10 \times 10^9/L$. However, many patients with aplastic anemia tolerate very low platelet counts without symptomatic hemorrhage. Since the major limitation of long-term platelet transfusion support is sensitization and development of antiplatelet antibodies, it is generally prudent to reserve platelet transfusions until the first signs of symptomatic bleeding appear. Prophylactic weekly or biweekly platelet transfusions may be required in selected patients who have a demonstrated bleeding tendency, and these transfusions are generally advisable in patients with less than 20 × 109 platelets/L who have an unstable or rapidly falling platelet count.

Patients with aplastic anemia have reduced numbers of granulocytes and, under certain circumstances, may require granulocyte transfusions. Current techniques allow collection of 2 to 4×10^{10} granulocytes from normal donors under optimal conditions. This corresponds to approximately 10 percent of the average daily production of granulocytes, but is as little as 1 percent of the maximal production during periods of infection or stress. Patients with severe granulocytopenia and bacterial infections such as septicemia, pneumonia, perirectal abcess, and cellulitis generally respond favorably to broad-spectrum antibiotics alone. Patients with documented infections who fail to respond to a 48- to 72-hour trial of appropriate antibiotic treatment may benefit from daily granulocyte transfusions. In contrast, no benefit in survival has been demonstrated in patients receiving granulocytes for undocumented infections or for fever alone. The use of "prophylactic" granulocyte transfusions in an effort to prevent infections in granulocytopenic patients cannot be recommended.

Adverse reactions are common in patients receiving granulocyte transfusions. Hepatitis, cytomegalovirus, and other infections may be transmitted. Granulocyte transfusions may also sensitize the recipient to HLA and non-HLA antigens, and may compromise the subsequent response to platelet as well as granulocyte transfusions. Febrile transfusion reactions and chills are frequent. Leukoagglutination may occur leading to serious pulmonary

complications. Because of these adverse effects, as well as the limited clinical benefit, granulocyte transfusions should be reserved for documented infections in patients who fail to respond to appropriate antibiotics.

Another major consideration in transfusion support relates to the fact that many patients with aplastic anemia are candidates for bone marrow transplantation. Blood products may sensitize these patients to histocompatibility antigens of the donor and thereby predispose them to rejection of the transplant. Transfusions should be minimized in patients who are potential bone marrow transplant candidates and blood products from genetically related donors should be avoided.

The prevention and treatment of infections is of critical importance in the management of patients with aplastic anemia. Most infections in granulocytopenic patients are acquired from the endogenous microbial flora of the skin and gastrointestinal tract. A variety of measures have been proposed to decrease the incidence of these infections, ranging from oral nonabsorbable antibiotics and reverse isolation to more intensive attempts to achieve total decontamination in laminar air flow units. Selected patients with short-term myelosuppression following cytotoxic chemotherapy may benefit from these measures, but the efficacy of these measures in patients with aplastic anemia has not been established.

Granulocytopenic patients who develop fever or infections require an intensive diagnostic and therapeutic approach. Fever generally indicates a bacterial, fungal, or viral infection. Gram-negative sepsis is common and may be rapidly fatal. Granulocytopenic patients with unexplained fever or overt infections should be promptly hospitalized and treated for a presumed bacterial infection until a definitive diagnosis is established. A broad-spectrum combination of antibiotics, such as an aminoglycoside (gentamicin, tobramycin, or amikacin) and a semisynthetic penicillin (ticarcillin or piperacillin), should be initially employed and modified when the results of bacteriologic and fungal cultures are available. Patients responding to antibiotics should receive a full 10- to 14-day course of treatment. Systemic candidiasis, aspergillosis, and other fungal infections are also common in granulocytopenic patients and should be suspected in patients who either fail to respond to antibiotics or who respond but develop recurrent fever. A definitive diagnosis may be difficult, and a therapeutic trial of amphotericin B is often indicated. Surveillance cultures of the skin, nasopharynx, throat, and stool may identify patients at high

risk to develop invasive fungal infections. Recently assays for circulating antigens from cryptococcus, aspergillus, and candida have been developed. These techniques may prove useful for the early diagnosis of invasive fungal infections.

TREATMENT DESIGNED TO RESTORE NORMAL HEMATOPOIESIS

The ultimate survival of patients with aplastic anemia depends on recovery of adequate bone marrow function. A number of therapeutic measures have been proposed to stimulate hematopoiesis.

Androgens have several well-defined effects on hematopoiesis and have been the most extensively studied treatment for aplastic anemia. Androgens increase erythropoietin production and enhance the erythroid end organ sensitivity to erythropoietin. Andorgens may also stimulate pluripotent stem cells and enhance both erythroid and granulocytic colony formation in vitro. The androgens most extensively studied in clinical trials have been oxymetholone and fluoxymesterone, which are taken orally, and nandrolone, which requires parenteral administration.

Androgens have been of limited efficacy in aplastic anemia. Patients with severe aplastic anemia rarely respond to androgen treatment, and overall survival has not been improved in several controlled clinical trials. A minority of patients with moderate pancytopenia may respond, but only after a 1- to 3-month therapeutic trial. Erythropoiesis is more likely to respond than granulocyte or platelet production. A small number of patients have shown an androgen-dependent response in which their peripheral blood counts improve while androgens are continued, but pancytopenia recurs when the drug is withdrawn. Prolonged treatment with androgens may be associated with substantial toxicity. Masculinization and fluid retention are common, and premature epiphyseal fusion may take place in children. The most serious complications of androgens is hepatoxicity. Cholestatic hepatitis frequently occurs in patients treated with the orally administered androgens. Peliosis hepatitis and hepatoma have been observed in patients receiving all classes of androgens.

Several conclusions may be drawn regarding the use of androgens. Patients with severe aplastic anemia are unlikely to benefit, and definitive treatment such as bone marrow transplantation should not be delayed to permit a trial of androgens. Adult patients with mild to moderate aplasia, however,