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Supervisor’s Foreword

1

Dr. Ambedkar’s thesis work has resulted in four papers, several conference pre-
sentations, and an “Outstanding Thesis™ award. This comes as no surprise to me.
Both in terms of the quantum of work and its quality, this dissertation is among the
best in its breed. While “clean coal technology™ is on everyone's wish-list, few
have identified the relevant technologies. Removal of ash and sulfur from Indian
coals prior to combustion using high-intensity acoustic fields is a novel concept
with the promise of high throughput and cost efficiency. By means of well-
designed experiments and sound analytical reasoning, Dr. Ambedkar has enun-
ciated a path to follow. By focusing on Indian coals, this work becomes of
immediate national relevance. While most Indian coals do have high ash content
and low sulfur, there are exceptions; also, increasingly. foreign and Indian coals
are being blended and used in power plants. Hence, simultaneous de-ashing and
de-sulfurization become a critical need. Coal washeries being operated in India are
unable to clean coal aggressively, being designed primarily to remove loosely-held
dust, dirt and other debris. But more of these are being brought on-line regularly.
This investigation paves the way for optimizing the design of coal washeries for
maximum effectiveness with minimum cost and pollutant discharge. This is
seminal work with potential for significant impact to the practice of coal washing
in India.

Chennai, September 2011 R. Nagarajan
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Symbols
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t
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dpt
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Mc
Kl'ﬂ
Dcﬂ'
Xa

Frequency of ultrasound (kHz)

Micrometer

Reagent concentration (mol/liter or gm/liter)
Sonication time (min)

Total specific surface area (m*/kg)

Rate of reaction with mass transfer (liter/mol*s)
Initial coal particle size ()

Final coal particle size (j1)

Energy dissipated/unit mass of liquid (W/kg)
Initial reaction mixture temperature (°C)
Final reaction mixture temperature (°C)
Reagent volume (m’)

Mass of coal (Kg)

Mass transfer co-efficient (m/s)

Effective diffusivity (m*/s)

Fractional conversion of solid reactant
Model constant

Model parameters

Erosion loss (g)

Fly-ash particle size (p)

Fly-ash quantity (g)

Volumetric flow rate (m /min) |Area of Nozzle * Velocity|

Initial radius of particle (p)
Molecular weight of sulfur
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Abbreviations

AOP Advanced Oxidation Process
ASTM  American Standard Testing Materials
DOE Design of Experiments

EDAX  Energy Dispersive X-ray Analysis
FGD Flue Gas De-Sulfurization

HCI Hydrochloric Acid

HLA High Level Analysis

HNO;  Nitric Acid

H,0, Hydrogen Peroxide

IS Indian Standard

LPC Laser Particle Counter

OH Hydroxyl Radicals

ROM Run of Mill

SEM Scanning Electron Microscope
TSR Total Sulfur Removal (%)

USCW  Ultrasonic Coal-Wash
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Chapter 1
Introduction

1.1 Importance of Coal Washing

Coal is the largest source of fuel for generation of electricity throughout the world.
The power sector will be the main driver of India’s coal consumption. Currently,
around 69% of the electricity consumed in India is generated from coal. Coal
reserves in India are plentiful but of low quality. India has 10% of the world’s coal
reserves, at over 92 billion tons, third only to USA and China in total reserves [1].
The full utilization of coal is limited by the presence of high levels of ash and
sulfur in it. During coal combustion, the mineral matter transforms into ash, and
the amount of ash is so large that it is not easy to utilize ash effectively. Fly-ash is
the finely divided mineral residue resulting from the combustion of ground or
powdered coal in electricity generating plant. It consists of inorganic matter
present in the coal that has been fused during coal combustion.

Mineral matter in coal causes several disadvantages, including: unnecessary
cost for transportation, handling difficulties during coal processing, leaching of
toxic elements during ash disposal, sulfur emission from pyrite-like minerals
giving rise to an environmental problem, and ash deposition leading to the dete-
rioration of boilers and accessories (thereby diminishing operating efficiency).
During coal combustion, fly-ash particles entrained in the flue gas from boiler
furnaces in coal-fired power plants can cause serious erosive wear on steel surfaces
along the flow path, thereby reducing the operational life of the mild-steel heat-
transfer plates that are used in the rotary regenerative heat exchangers. Moreover,
in technical practice, erosion is often accompanied by a chemical attack.

In coal-fired power stations, nearly 20% of the ash in the coal is deposited on
boiler walls, economisers, air-heaters and super-heater tubes and is eventually taken
out as bottom ash. The deposited ash is subsequently discharged as slag and clinker
during the soot-blowing process. The rest of the ash is entrained in the stream of flue
gas leaving the boiler. The ash-laden flue gas passes through the narrow passages
between the corrugated steel plates that constitute the air heater elements. The ash

B. Ambedkar, Ultrasonic Coal-Wash for De-Ashing and De-Sulfurization, 1
Springer Theses, DOI: 10.1007/978-3-642-25017-0_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

particles collide with the surfaces of the steel air heater elements and material is
eroded from the surfaces. In advanced stage of erosion, the plates become perforated.
The air heater elements fail once they cannot maintain their structural integrity.
SOx as a pollutant are a real threat to both the ecosystem and to human health.
Sulfur is found in two forms in coal: (1) Inorganic sulfur, and (2) Organic sulfur.
The inorganic sulfur again classified into two class (a) sulphate sulfur and (b)
pyritic sulfur. Sulphate sulfur occurs in combination with Ca, Mg, Ba, Fe, etc.
Pyritic sulfur in coal are pyrite (FeS,), dimorphic marcasite (FeS,), sphalerite
(ZnS), galena (PbS), chalcopyrite (CuFeS,), pyrhhotite (Fe, S), arsenopyrite
(FeAsS) and others. The chemical structures of organic sulfur components of coal
are generally part of the macro-molecular structure of the coal itself. Organic
sulfur is chemically bonded and very difficult to remove by physical cleaning
methods. The organic sulfur components can be broadly divided into aliphatic and
aromatic or heterocyclic sulfur structures.
Methods to control SO, emissions may be classified as:

De-sulfurization of coal prior to combustion (Physical, Chemical, Microbial),
The removal of sulfur oxides during combustion,

The removal of sulfur oxides after combustion, and

Conversion of coal to a clean fuel by gasification and liquefaction.

L N —-

&

However, these are ineffective in the sense that time and energy consumption are
high, and many chemicals are involved, introducing difficulties in handling of by-
products during process. Nowadays, online flue gas de-sulfurization is being
attempted to remove sulfur from coal post-combustion. The biggest disadvantage
associated with this method is formation of by-products [Flue Gas Desulfurization
(FGD) gypsum is one|. According to the American Coal Ash Association’s annual
Coal Combustion Product Production and Use Survey, total production of FGD
gypsum in 2006 was approximately 12 million tons. Close to 9 million tons of FGD
gypsum were put to beneficial use, while the remainder was land-filled. There is, at
present, no way for effective usage of all FGD gypsum generated as by-product [2].

There are also concerns about environmental effects when FGD gypsum is used
for soil amendment, and there are some reports on how chemical properties of soils,
plants and animals are affected following FGD gypsum application (Environmental
Protection Agency, USA). Concentrations of elements in soil, soil water, plant
tissue and earthworms were measured. Results indicate that concentrations of Ca
and S increased in plant tissue, soil, and soil water and the concentrations of Al and
Fe decreased in plant tissue by gypsums. This will lead to acute and chronic effects
to humans as well as plants. Over the next 10 years, annual production of FGD
gypsum may double as more coal-fired power plants come online, and as scrubbers
are added to existing power plants to meet the environmental clean-air standards. In
the worst case, where sulfur in coal is 10% or higher, releasable sulfur amount can
become very high. This would lead to unnecessary transport and storage before, as
well as after, combustion in terms of FGD gypsum. There is clearly a need for
removing ash and sulfur from coal prior to combustion. Ultrasonic coal-wash is one
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Fig. 1.1 Sound frequency range

such technique to effectively remove ash and sulfur from coal prior to combustion.
In addition, it is easy to scale-up as a continuous process. ’

1.2 Ultrasound-Assisted Process Intensification

A wave is defined as a disturbance that propagates through space and time, usually
with transference of energy. Waves travel and transfer energy from one point to
another, often with no permanent displacement of the particles of the medium (that
is, with little or no associated mass transport); they consist instead of oscillations
or vibrations around almost fixed locations. A sound wave is a mechanical pressure
wave that propagates or travels through a medium due to the restoring forces it
produces upon deformation. Since a sound wave consists of a repeating pattern of
high-pressure and low-pressure regions moving through a medium, it is sometimes
referred to as a pressure wave.

Ultrasound is cyclic sound pressure with a frequency greater than the upper limit
of human hearing. Although this limit varies from person to person, it is approxi-
mately 20 kHz (20,000 Hz) in healthy, young adults and thus, 20 kHz serves as a
useful lower limit in describing ultrasound. The frequency ranges of sound are
shown in Fig. 1.1. Sound wave of frequency less than 20 Hz is known as infrasound.

Ultrasound is a novel technology which is in widespread use in various sci-
entific and medical fields [3, 4]—e.g., surface cleaning in microelectronics man-
ufacturing, biomedical device cleaning, sono-chemical reactors designed to
accelerate chemical reactions by several orders of magnitude, sono-intensification
of mass-transfer and heat-transfer rates, sono-mixing and de-stratification in tall
containers, nano-particle fabrication by sono-fragmentation, etc.

1.2.1 Basic Mechanism of Ultrasound

When ultrasound is applied to a medium such as water, the basic physical
phenomena involved in producing changes observed (physical and chemical
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Fig. 1.2 Acoustic cavitation in ultrasonic tank

effects) in the medium are of two types—acoustic cavitation and streaming.
Cavitation is the dominant mechanism in ultrasonic fields in the <100 kHz
frequency. Two types of acoustic cavitations are identified, namely, stable
cavitation and transient cavitation. In stable cavitation, bubbles continue to
oscillate near their resonance size without collapsing; in transient cavitation,
encountered in our system, bubbles grow and collapse, as observed visually and
via measurements of cavitation intensity. Cavitational collapse results in extreme
conditions producing light emission, shock waves, and localized high tempera-
tures (up to approx. 5000 K) and pressures (up to 100 atm). These shock waves
are responsible for the rupturing of neighboring solids (which may be vessel
walls or immersed solids), leading to the generation of shear forces and eddies
which, in turn, lead to an increase in turbulent energy dissipation. The number of
these shock waves is related to the frequency of the waves [5, 6]. Typical
acoustic cavitation that occurs in low-frequency ultrasonic tank is shown in
Fig. 1.2.

Acoustic streaming refers to unidirectional flow currents in a fluid formed due
to the presence of sound waves. Typical acoustic streaming that occurs in high-
frequency ultrasonic and megasonic tanks is shown in Fig. 1.3. The formation of
acoustic fountains is observed at the center of the transducer locations. Acoustic
streaming comprises several important effects: (1) bulk motion of the liquid
(Rayleigh streaming), (2) micro-streaming (Eckert streaming) and (3) streaming
inside the boundary layer (Schlichting streaming). The primary effect of acoustic
streaming is steady bulk motion of the liquid which generates shear force. A
second effect of acoustic streaming is micro-streaming. Micro-streaming occurs at
the substrate surface, outside the boundary layer, due to the action of bubbles as
acoustic lenses that focus sound power in the immediate vicinity of the bubble.
Micro-streaming aids in dislodging particles and contributes to megasonic
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cleaning. Most of the flow induced by acoustic streaming occurs in the bulk liquid
outside the boundary layer. However, there is a third effect of acoustic streaming—
Schlichting streaming—which is associated with cavitation collapse. Schlichting
streaming occurs inside the boundary layer and is characterized by very high local
velocity and vortex (rotational) motion. Acoustic streaming, both inside and out-
side the boundary layer, enhances cleaning and other chemical reactions.

Two basic mechanisms for acoustically enhanced coal washing have been
suggested by Mason et al. [7]: (a) an increase in the abrasion of suspended coal in
slurries leading to the removal of dust material from the surface of coal, and (b) an
enhanced leaching of contaminants (mineral matter) from the interior of coal
particles. Under the influence of ultrasound, normal leaching occurs, but several
additional factors contribute towards improvements in the efficiency. These
include:

1. Asymmetric cavitation bubble collapse in the vicinity of the solid surface,
leading to the formation of high-speed micro jets targeted at the solid surface.
The micro jets can enhance transport rates and also increase surface area
through surface pitting.

2. Particle fragmentation through collisions will increase surface area.

3. Cavitation collapse will generate shock waves which can cause particle
cracking through which the leaching agent can enter the interior of particle by
capillary action.

4. Acoustic streaming leads to the disturbance of the diffusion layer on the
surface.

5. Diftusion through pores to the reaction zone will be enhanced by the ultrasonic
capillary effect.



