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Preface

The present monograph discusses a number of mathematical and concep-
tual methods applicable in the analysis of electromagnetic fields. The
leading tone is dyadic algebra. It is applied in the form originated by
J.W. Gibbs more than one hundred years ago, with new powerful iden-
tities added, making coordinate-dependent operations in electromagnetics
all but obsolete. The chapters on complex vectors and dyadics are indepen-
dent of the rest of the book, actually independent of electromagnetics, so
they can be applied in other branches of physics as well. It is claimed that
by memorizing about five basic dyadic identities (similar to the well-known
bac-cab rule in vector algebra), a working knowledge of dyadic algebra is
obtained. To save the memory, a collection of these basic dyadic identities,
together with their most important special cases, is given as an appendix.
In different chapters the dyadics are seen in action. It is shown how simply
different properties can be expressed in terms of dyadics: boundary and
interface conditions, medium equations, solving Green functions, generaliz-
ing circuit theory to vector field problems with dyadic impedances, finding
transformations between field problems and, finally, working on multipole
and image sources for different problems.

Dyadic algebra is seen especially to aid in solving electromagnetic prob-
lems involving different linear media. In recent years, the chiral medium
with its wide range of potential applications has directed theoretical inter-
est to new materials. The most general isotropic medium, the bi-isotropic
medium, has made electromagnetic theory a fresh subject again, with new
phenomena being looked for. The medium aspect is carried along in this
text. What is normally analysed in isotropic media is done here for bi-
isotropic or sometimes for bianisotropic media, if possible. Especially new
is the duality transformation, which actually exists as a pair of transforma-
tions. It is seen to shed new light on the plus and minus field decomposition,
which has proved useful for analysing fields in chiral media, by showing that
they are nothing more than self-dual fields with respect to each of the two
transformations.

In Chapter 5, Green dyadics for different kinds of media are discussed
and a systematic method for their solution, without applying the Fourier
transformation, is given. In Chapter 6, source equivalence and its rela-
tion to non-radiating sources is discussed, together with certain equivalent
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sources: point sources (multipoles) and surface sources (Huygens’ sources).
Everywhere in the text the main emphasis is not on specific results but
methods of analysis.

The final chapter gives a summary of the work done by this author
and colleagues on the EIT, exact image theory. This is a general method
for solving problems involving layered media by replacing them by image
sources which are located in complex space. The EIT is presented here for
the first time in book form. '

The contents of this monograph reflect some of the work done and
courses given by this author during the last two decades. The results
should be of interest to scientists doing research work in electromagnetics,
as well as to graduate students. For classroom use, there are numerous
possibilities for homework problems requiring the student to fill in steps
which have been omitted to keep the size of this monograph within certain
limits. The EIT can also be studied independently and additional material,
not found in this text, exists in print (see referece lists at section ends of
Chapter 7).

The text has been typed and figures drawn by the author alone, leaving
no-one else to blame. On the other hand, during graduate courses given
on the material, many students have helped in checking a great number of
equations. Also, the material of Chapters 1 and 2 has been given earlier
as a laboratory report and a few misprints have been pointed out by some
international readers. For all these I am thankful. The rest of the errors
and misprints are still there to be found.

This book is dedicated to my wife Liisa. A wise man is recognized for
having a wife wiser than himself. I have the pleasure to consider myself a
wise man.

Helsinki I.V.L.
July 1991
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Chapter 1

Complex vectors

Complex vectors are vectors whose components can be complex numbers.
They were introduced by the famous American physicist J. WILLARD
GIBBS, sometimes called the ‘Maxwell of America’, at about the same
period in the 1880’s as the real vector algebra, in a privately printed but
widely circulated pamphlet Elements of vector analysis. Gibbs called these
complex extensions of vectors ‘bivectors’ and they were needed, for ex-
ample, in his analysis of time-harmonic optical fields in crystals. In a
later book compiled by Gibbs’s student WILSON in 1909, the text reap-
peared in extended form, but with only few new ideas (GIBBS and WILSON
1909). Thenceforth, complex vectors have been treated mainly in books
on electromagnetics in the context of time-harmonic fields. Instead of a
full application of complex vector algebra, the analyses, however, mostly
made use of trigonometric function calculations. As will be seen in this
chapter, complex vector algebra offers a simple method for the analysis of
time-harmonic fields. In fact, it is possible to use many of the rules known
from real vector algebra, although not all the conclusions. Properties of
the ellipse of time-harmonic vectors can be seen to be directly obtainable
through operations on complex vectors.

1.1 Notation

As mentioned above, complex vector formalism is applied in electromag-
netics when dealing with time-harmonic field quantities. A time-harmonic
field vector F(t), or ‘sinusoidal field’ is any real vector function of time ¢
that satisfies the differential equation

d'2

dtQF(t) + W?F(t) = 0. (1.1)

A general solution can be expressed in terms of two constant real vectors
F, and F» in the form

F(t) = F coswt + Fysinwt. (1.2)
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The complex vector formalism can be used to replace the time-harmonic
vectors provided the angular frequency w is constant. There are certain
advantages to this change in notation and, of course, the disadvantage
that some new concepts and formulas must be learned. The main bulk
of formulas, however, is the same as for real vectors. As an advantage,
in using complex vector algebra, work with trigonometric formulas can be
avoided, and the formulas look much simpler.

The complex vector f is defined as a combination of two real vectors,
f.. the real part. and f;,,, the imaginary part of f:

f = frv +jﬁm- (13)

The subscripts re and im can be conceived as operators, giving the real
and, respectively, the imaginary parts of a complex vector.

The essential point in the complex vector formalism lies in the one-
to-one correspondence with the time-harmonic vectors f «— F(¢). In fact,
there are two mappings which give a unique time-harmonic vector for a
given complex vector and vice versa. They are:

f - F(t): F(t) = R{fe’*"} = f.o coswt — £, sinwt, (1.4)

F(t)—f: f=F(0) - jF(r/2w)=F, — jF.. (1.5)

Thus, for the two representations (1.2) and (1.3) we can see the correspon-
dences f.. = F; and f,,, = —F>,.

The mappings (1.4), (1.5) are cach other's inverses, as is easy to show.
For example, let us insert (1.4) into (1.5):

f=R{fe"} — jR{FI™/?} = fre + jfin, (1.6)

which results in the identity f = f.

[t is important to note that there always exists a time-harmonic counter-
part to a complex vector whatever its origin. In fact. in analysis, there arise
complex vectors, which do not represent a time-harmonic field quantity, for
examle the wave vector k or the Poynting vector P. We can, however, al-
ways define a time-harmonic vector through (1.4). maybe lacking physical
content but helpful in forming a mental picture.

A time-harmonic vector F(t) = F| coswt + F, sinwt traces an ellipse in
space, which may reduce to a line segment or a circle. This is seen from
the following reasoning.

o If F; x F, = 0, the vectors are parallel or at least one of them is a
null vector. Hence, F(1) is either a null vector or moves along a line

and is called linearly polarized (LP).
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o If F| x Fy # 0, the vectors define a plane, in which the vector F(t)
rotates. Forming the auxiliary vectors b = F; x (F; x F3) and
c = Fy x (F; x F3), we can easily see that the equation (b-F(t))? +
(c-F(1))?> = |F; x Fa|* is satisfied. This is a second order equation,
whose solution F(t) is obviously finite for all ¢, whence the curve it
traces is an ellipse.

e The special case of a circularly polarized (CP) vector is obtained,
when |F(t)|*> = F? cos® wt + F2sin® wt + F, - Fy sin 2wt is constant for
all t. Taking t = 0 and t = /2 gives F? = F3, which leads to the
second condition Fy - F» = 0.

Thus, to every complex vector f there corresponds an ellipse just as for
every real vector there corresponds an arrow in space. The real and imag-
inary parts f., f,, both lie on the ellipse. f.. equals the time origin value
and is called the phase vector of the ellipse. The direction of rotation of
F(t) on the ellipse equals that of f;,, turned towards f;. in the shortest way.
A complex vector which is not linearly polarized (NLP) has a handedness
of rotation, which depends on the direction of aspect. The rotation is right
handed when looked at in a direction u (a real vector) such that f;,,, x f..-u
Is a positive number and, conversely, left handed if it is negative.

An LP vector must be represented by a double-headed arrow (infinitely
thin ellipse), which is in distinction with the one-headed arrow represen-
tation of real vectors. The difference is of course due to the fact that the
time-harmonic vector (1.2) oscillates between its two extremities.

The complex conjugate of a complex vector f, denoted by f*, is defined
by

£* = (fre +jfim)* = f. — jfiln- (17)

From (1.4) we can see that f* corresponds to the time-dependent vector
F(—1), or it rotates in the opposite direction along the same ellipse as f(t).

The complex vector f is LP if and only if f.. x fi,, = 0. This is equivalent
with the following condition:

fisLP & fxf*=o0. (1.8)
The corresponding condition for the CP vector is
fisCP & f-f=0. (1.9)

In fact, (1.9) implies that ffe = fi?“ and fi. - fi,, = 0, which is equivalent

with the CP property of the corresponding time-harmonic vector, as was
seen above.
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Every LP vector can be written as a multiple of a real unit vector u
in the form f = au. Every CP vector f can be written in terms of two
orthogonal real unit vectors u, v in the form f = a(u + jv). In these
expressions « is a complex scalar, in general.

1.2 Complex vector identities

The algebra of complex vectors obeys many of the rules known from the real
vector algebra, but not all. For example, the implicationa-a=0 = a =10
is not valid for complex vectors. To be more confident in using identities
of real vector algebra, the following theorem appears useful:

all multilinear 1dentities valid for real vectors are also valid for
complex vectors.

A multilinear function F' of vector arguments a;, as,... is a function
which is linear in every argument, or the following is valid:

F(ay,a, ..., (aa + fay),...,a,) =

"

aF(ay,...,al, ...,a,)+ F(ay,..,a’, ..a,). (1.10)

A multilinear identity is of the form
F(ay,...,a,)=0 foralla;, i=1.n. (1.11)

Now, if the identity is valid for real vectors a; and the function does not
involve a conjugation operation, from the linearity property (1.10) we can
show that it must be valid for complex vectors a; as well. In fact, taking
a = 1,3 = j, the identity is obviously valid if the real vector a; is replaced
by the complex vector a) + «a!’. This can be repeated for every ¢ and, thus,
all vectors a; can be complex in the identity (1.11). As an example of a
trilinear identity we might write

ax(bxc)—(a-c)b+(a-b)e=0 forall a, b, c. (1.12)

Also, all non-linear identities which can be derived from multilinear
identities are valid for complex vectors, like a x a = 0 for all vectors a. The
conjugation operation can be introduced by inserting conjugated complex
vectors in multilinear identities. Thus, the identity

l]a x b|* = |a|*|b|® — |]a-b*|?, (1.13)
can be obtained from the real quadrilinear identity

(axb) - (cxd)=(a-c)(b-d)—(a-d)(b-c), (1.14)



