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EDITOR’S PREFACE

The papers that were presented during the Third Symposium in Applied
Mathematics of the American Mathematical Society are published in this vol-
ume. The Symposium was held at the University of Michigan from June 14
to 16, 1949. The subject of the Symposium was Elasticity; it included plas-
ticity. The Symposium was cosponsored by the Applied Mechanics Division
of the American Society of Mechanical Engineers, and joint sessions of the
Symposium and that Division’s Fifteenth Applied Mechanies Conference were
held on June 15.

The papers in this volume are grouped roughly according to subjects. Owing
to previous arrangements for publication, two of the papers appear here as
abstracts containing references to the complete papers. Four papers from the
program of the Applied Mechanics Conference were presented at the joint ses-
sions with the Symposium. The place of publication of those four papera is
announced at the end of this volume.

On behalf of the American Mathematical Society, the Editorial Commlttee,
‘consisting of Eric Reissner, A. H, Taub, and the undersigned, wishes to express
its gratitude to the McGraw-Hill Book Company, Inc., for undertaking the
publication of this volume. The Committee extends its thanks to R. C. Gibbs
of the National Research Council for his assistance in initiating these arrange-
ments for publication and to the officers of McGraw-Hill and of the Society for
carrying out this arrangement. In the editorial processing of this volume, the
undersigned wishes to acknowledge the work of the New York Office of the
Bociety as well as the assistance of the other two members of the Editorial Com-
mittee and the help given by G. E. Hay and P. G. Hodge, Jr.

R. V. CaurcHILL

Chairman, Editorial Commatiee

Proceedings of Symposia tn Applied Mathematics
American Mathematical Society
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APPROXIMATE METHODS OF SOLUTION OF TWO-DIMENSIONAL
PROBLEMS IN ANISOTROPIC ELASTICITY

BY

I. 8. SOKOLNIKOFF

1. The scope of research. This paper contains an account of one phase of
research in the domain of two-dimensional problems of anisotropic elasticity
initiated at the University of California (Los Angeles) this year. The object of
this research is to develop practical methods for the explicit solution of a wide
elass of problems involving the states of plane stress and plane strain in aniso-
tropic elastic media, and to study the problems of deflection of thin anisotropie
elastic plates. The investigation hinges on an approximate determination of
appropriate stress functions for the anisotropic problems from certain known
stress functions in the corresponding isotropic cases.

A systematic use of Airy’s stress function in the solution of two-dimensional
problems of anisotropic elasticity, following the pattern laid down by -N. I.
Muschelisvili for the isotropic case, was made by S. G. Lechnitzky. An outline
of this mode of attack on the two-dimensional boundary-value problems of
elasticity is contained in an address given by the author [1] before the meeting
of the American Mathematical Society in 1941. Since numerous references to
original sources are given in that address, they will not be duplicated here, but to
facilitate the understanding of the perturbation procedures discussed in See. 3,
the essential concepts, in so far as they bear on the boundary-value problems of
anisotropic elasticity, are sketched in the following section.

2, Formulation of boundary-value problems. We consider a two-dimensional
anisotropic elastic medium, having at least one plane of elastic symmetry, which
we take as the XY plane of our rectangular coordinate system. The region R
occupied by the medium is, in general, multiply connected. We denote the
boundary of the region by C, where C may consist of the exterior contour Co and
several interior contours C; (z = 1, -+ ,n). The region R (if multiply con-
nected) may be regarded either as representing a thin plate with holes or the
cross section of an infinitely long cylinder with longitudinal cavities.

We suppose that either the distribution of stresses along C (the first boundary-
value problem) or the displacement of points of the boundary C' (the second
boundary-value problem), is known. The problem is to determine stresses and
strains in the reglon

It is well known' that the solution of these boundary-value problems hinges on
the determination of Airy’s stress function U(z, y), satisfying the dlﬁerentla.l
equation of the form

1 See Bibliography on pp. 553-555 of the address cited in [1].
1



2 I. 8. SOKOLNIKOFF

o'U o'U o'U Jv
(1) +c’6:z’6y+c3a:c’ay’ “mop T S = O

where the constants ¢; are real funetions of the known elastic moduli of the
medium.

¥is)

Fig. 1

The components 7., 7., 7y Of the stress tensor = are related to U by the
formulas .
(2) T — ﬂ] T == e i(_]— T, = ail‘_]
2z ayp 2y 6.’6 ays w axz'

The general solution of equation (1) has the form
4
@) U= ;1 Fiz + pay),

where the functions F; are of class C* and the u’s are the distinct roots of the
characteristic equation

@ e’ + o’ + e’ + e+ = 0.

"The case of multiple roots of the characteristic equation is of relatively trivial
interest because in that case the problem can be reduced to an isotropic one by a
simple linear transformation.

From the fact that the energy of deformation is nonnegative, it is easy to show
that the roots u; of equation (4) are complex numbers. This was first demon-
strated by S. G. Lechnitzky.’

% This follows from remarks made immediately after equation (5) below.
* Seo (2], & paper which is concerned with the problem of deﬂectlon of thin anisotropic
plates.
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Since the c; in equation (4) are real, it follows that its roots are conjugate com-
plex numbers, and we can write

= ji, M = by
We can rewrite the general solution (3) in a more convenient form by introduc-

ing two complex variables z; and 2, defined as follows:

2=+ my
z + (o1 + 18y
n + iyl,

mu

where

n=z+ay, wn=7py;-
2 =2+ my
=7z + (o2 + 1B)y
= 25 + 1Y,

with
2=z + ay, Y= Py.

Since U (z, y) is a real function, the solution (3) assumes the form

(5) U = Fi(a1)) + Fafz) + Fi(z1) + Fa(2),

where we use bars to denote the conjugate complex values.
If the characteristic equation (4) has multiple roots, then z1 = 2, and the
solution of equation (1) has the form

U = Fi(z) + ZF(21) + Fi(z) + 2F(z),

which becomes identical with the solution of the biharmonic equation when the
variable z; is replaced by z = = + fy. Thus the study of the behavior of aniso-
tropic media, whose elastic properties are such that the roots of the associated
characteristic equation are multiple, is reducible to an isotropic case.

" It follows from the definition of the variables z; and 2, that their domains R, and
R; are obtainable from R by the homogeneous deformations:

=z + ay,
Th:
' {yl = ﬁly:
‘and
2y = Z + oy,
T,:
: {yz = Bw.
From the differentiability of Airy’s stress function U(z, y), it follows that

Fi(z:) and F,(z,;) are analytic functions defined in the regions B, and R, respec-
tively. '
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We readily deduce from the representation (5) and relations (2) that

7 = 2R0AFY () + piF2 ()]
T = 29{[F1'(21),;+ F3 (22)], .
T = — 2R[mF1 (31)“’,‘ uaFs (23],

where R denotes the real part of expressions contained in the brackets.
If we insert these expressions in the boundary conditions:

 7ss €08 (2, B) + 7oy 08 (y, n)’'= X(s),
Toy €08 (2, n) + 74y c08 (y, n) = Y(9), on C,

in which X (s) and Y(s) are the components of prescribed external forces acting
on C (s being the arc parameter along C) and integrate along the contours from
some initial value s = & to a variable point s = 8, we get'

2RFi(e) + wie)] = [ X ds + o
= fi(s),
2RIFi(e) + Fifed] = [ ¥(0) ds + o
= fi(s),

where f, and f; are known functions along C, and ¢ and c; are constants. These
can be fixed arbitrarily on only one of the contours, say Cl.

If, on the other hand, the components of the displacement vector are specified
along C as functions of the arc-parameter s, so that

©)

u = gi(s),
v = gss),

then a somewhat less obvious computation utilizing the stress-strain relations
yields (3]
o 2R[0Fy (@) + aF3(a)] = g1(6),

2R[iF1(z) + boFs(2)] = g:(s),  onC,

where the a; and b; are known rational functions of the elastic moduli of the
medium. .

Tt is clear from these formulas that the solution of the first and second bound-
ary-value problems of anisotropic elasticity is reduced to the determination of
analytic functions F1(z) and Fs(z,) from functional equations (6) and (7). The
questions of existence and uniqueness of solution of these equations are settled by
reducing them to certain equivalent systems of integral equations of the standard

4 Note that if n denotes the exterior unit normal, then dz/ds = —cos (y, n) and
dy/ds = cos (z, n).
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'types.' The integral equations can serve as a point of departure for the actual
determination of unknown functions, but there are also methods of solution of
equations (6) and (7) that are based on an extension of the scheme of N. I.
Muschelisvili [4] which proved so successful in the treatment of numerous bound-
ary-value problems of isotropic elasticity. However, in the application of these
methods to problems in anisotropic elasticity one frequently runs-into serious
computational difficulties connected with the construction of suitable conformal
mapping functions.’ It is natural therefore to attempt to reduce the solution
of such problems to the isotropic case. This can be done, for certain types of
anisotropic media, in the manner outlined in Sec. 3.

The results summarized in this section have been obtained during the past
decade or so by several Russian investigators, notably S. G. Lechnitzky. How-
ever, many Soviet publications in which these researches appeared were not
made accessible to workers in the English-speaking countries. As a consequence,
results obtained by the Soviet investigators have been extensively duplicated in
this country and in England.’ .

8. Perturbation methods. The fundamental idea underlying the reduction of
solution of the boundary-value problems of anisotropic elasticity to the solution
of a sequence of isotropic problems is simple. It is a variant of the perturbation
procedure often used to obtain approximate solutions of nonlinear differential
equations.

In order to simplify the exposition, we consider, instead of equation (1), the
equation

o'U o'U o'U
® clw‘l'caa———xgayz'l’cssy—;—
which corresponds to the case of orthotropic elastic medium.! The corresponding
treatment for the more general case typified by equation (1) presents no compli-
cation and merely leads to the more involved recursion relations.

We observe that, if the medium is isotropic, equation (8) reduces to the bi-

harmonic equation .
VU =0,

0,

* These matters have been dealt with by 8. G. Michlin, Publications de Vinstitut séis
mologique, Acad. Sci. URSS, No. 76 (1936). D. I. Sherman, ibid., No. 86 (1838).

¢ See, for example, [5].

7 8ee, in particular, numerous papers by A. E. Green, 8. Holgate, A. C. Stevenson, and
G. 1. Taylor in the Royal Proceedings for the year 1945.

3 It may help to recall that if equation (8) refers to a problem dealing with the state of
plane stress, the constants are related to the elastic moduli as follows: ¢ = 1/Ey, ¢3 =
1/ptzy — (2024)/E., ¢s = 1/E,, where E, and E, are Young’s moduli in the principal directions
indicated by the subseripts, ¢,y is Poisson’s ratio representing the contraction in the Y
direction by a tensile stress acting in the X direction, ., is the shearing modulus charac-
" terizing the change in angle between the principal directions, and E.oy. = Eyosy. Similar
relations, involving elastic moduli associated with the Z direction, can be written for the
¢’s in problems concerned with the state of plane strain.
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in which case the roots of charactenstlc equation (4) are gy = p2 = 7. Wealso
note that the u; characterize the nature of anisotropy of the medium inasmuch
a8 the coefficients ¢; are symmetric functions of the roots ;. Thus, lf we define
the numbers ¢; (in general complex) by the formulas i

i(l+ a) wm=h,
1’(1 + 52), e = ﬁx,

m

we see that the parameters ¢; can be taken as the measure of deviation of the
medium from isotropic state. For many structural materials, the deviation
parameters e; are less than 1 in absolute value, and this suggests that the solu-
tion of equation (8) might be represented in the form

9) U= E Uii(zt y)el‘egy
% j=0

‘where the U;; are unknown functions of 2 and y to be determined so that U satis-
fies equation (8). If | &; | < 1, a few terms of the series (9) might be expected to
yield a good approximation to the desired solution.
Replacing the coefficients ¢; in equation (8) by their values in terms of the ¢;
" gives

1+ o+ 20 o

o' |, U
2]6x”6y2+7=0'

and the substitution of the series (9) in this equation leads to the following sys-
tem of equations to be satisfied by the functions U;;:

VU =0,

=+ M+ a’+ 0+ e

2
VU, = —(%—, V'@Uiaj + 2Uij1 + Uiaj + Usps)
(10) ' - ’
== 5";4 QUiass+ 2Uisjr + AUy 51 + Uiz ja),

Ui=0 (if 4 or j is negative).
We see that these equations are of the type
(11) V4U"J' - fii(Umr Uty =1y Ui-li—l) (irj =1,2 - ')’

in which the f;; are known functions of the indicated arguments and U; = Uj;.
The general solution of the first equation in the system (10) has the form

Un = Rlgm(z) + Zom(2)],

where puo and o are arbitrary analytic functions of z = z + 4y, The substitu-
tion of this expression for Uw in the right-hand member of the second equation
of the system (10) with ¢ = 1 ,j=0 yxelds the equatlon

V‘Um = —-2 — VzUu,

R, 75 e BEPDEIE U5 [A) : www. ertongbook. com



PROBLEMS IN ANISOTROPIC' ELASTICITY ¢

whose solution is :
Un = Rlem(2) + Zem(z) — oon(2)],

in which the functions ¢ are analytic. Seiting ¢ = 2, j = 0 in equation (10) gives
the equation for Ux, which can be solved by quadratures to yield

Un = Rlom(2) + Zem(2) + 300m(2) — otz + ¥eZera ()],

Continuation of this procedure leads to the general solution of the system (10)
in the form . -
i1

12 Uy =R 20 2oinle),
in which the functions ¢;j and ¢;;; are arbitrary and the remaining ones sﬁtiﬂfy
the relations:

—16(m + 2)(m + Deiinsz ,_

= (m + 1)(80il1 jmsr +”890:'/1'—1 mit + 40 jmaa + 40¢ 51 mi1)

+ (m + 2)(m + 1) (160: 1 5mi2 + 1605 11miz + 80ictjmis + 807 it msr)

+ (n + 3)(m + 2)(m + 1) (8piss ymia + 80% jicimis + 404 smis + 41 g1mi0)

+ 28 om + 208 i tmia + O iam + ‘Pf‘i':);—zm)

+ (m + 1)Bpilt 2 mi1 + 8ot 1w + 18000 11 1 + 4(’::.’3 ~am41)
A 2)m 4 1) (120 1 j2mir + 1205 s 1mis + 24051 11 mea

+ 6025 2min) + (m + 3)(m + 2)(m + 1)

o~ - (8piti2mis + 80i2itmis + 16051 i1 mis + 4ot amis)
+ (m+ 4H(m + 3)(m + 2)(m + 1)

© et jrmit + 20i2iamid + 40t famid F Qiv2 i mid)-

The functions ¢; and ¢;;; are determined (essentially uniquely) by the boundary
conditions. We do not write out the corresponding system of functional equa-
tions for their determination,® because its structure is entirely similar to equa-
tions (6) and (7).

Despite the formidable appearance of solution as given by the expression (9),
specific computations indicate that a satisfactory approximate solution is ob-
tained, in & number of problems, if one retains in the expansion only linear or
quadratic terms in the deviation parameters ¢;. The computational labor in
such cases is not excessively heavy.

The perturbational procedure, deseribed above, naturally is not the only one
that can be applied to anisotropic problems. Thus, one can introduce the
perturbation parameters e; not in the roots p; of characteristic equations, hut
directly into the coefficients of equation (8) after it has been divided through by
the numerically largest coefficient ¢;. For examile, if equation (8) is written
in the form
o'U..

cdblhoid

¢ ‘U o'U

B T2

A discussion of these equations is too lengthy to be included in this paper.



8 i I. 5. SOKOLNIKOFF

and if we set
1—m23,
Cs
Cs
1—¢=29,
" Cs
the equation assumes the form
o'U 'U ‘U -

where the ¢, and ¢, are new deviation parameters.”
If ¢; and ¢, are small compared with umity, it is reasonable to seek solution of
equation (13) in the form.

(19) Ulz,y) = Z Uiz, y)eie).

4, ju=0
This time the procedure that has led to equations (10) leads to a simpler system
of equations: L
V'Uw =

(15) o't 8

, V'U,; = py Uia; + 3
Since the formal structure of these equations is typified by the system (11), we
again seek the solution in the form (12) and obtain the following relations for
the functions ¢;; mi2 (m = 0,1, 2, « - +):

16(7)2 + 2) !.‘P,i,imw
= [l jm + 4(m + 1)1 jmia + 6(m + D11 jmre
+ 4(m + 3)“)’0—1] m+8 + (m + 4) !¢r—1 jn-l-(]
+ [miq’sl;;)lm e 4(m + 1)'(0: ]—1m+1 + 6(m + 2)'¢| i—1m4-2
— 4(m + 3)'90,;-1m+a + (m + 4)!(0':'—1-“]

As in the former case, the functions ¢; ” and ¢;;1 are subject to the determination
from prescribed boundary conditions.™

Another variant of the perturbation scheme, leading to simple recursion for-
mulas, makes use of equation (8) in the form™

aU o8'U |, o'U _ L
(16) + axa+W_0’

Ui (i:j =12 ')'

10 These parameters are obviously functions of & and ¢ used in the preceding discussion,
since the coefficients in equation (13) are symmetric functions of the roots w; of the charac-
teristic equation.

1t These computations were peiformed by Mr. Harold Luxenberg, Research Assistant,
University of California (Los Angeles) who made use of them in the analysis of deﬂectlon
of thin orthotropic elastic plates. In particular, this variant of the perturbational pro- -
cedure leads readily to the known solution of the problem of deflection of a clamped elliptic
plate subjected to a uniform normal load.

2 This variant was considered by Mr. Julius Brandstatter, Research Assistant, Uni-
versity of California (Los Angeles), who is responsible for the calculatmnﬂ given in the
remainder of this section.
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~ which is obtained from equation (8) by making the transformation

. G 1/4
' (cs) y'

The value of « in terms of the original coeﬂicxents ¢; is given by the expression
k= ¢/ (c;c;)"’
- There are two cases to be considered, depending on whether | « | is less than

or greater than 1.
If | x| < |, weset x = 1 — eand seek the solution in the form
an U = X, Uiz, n)e

The substitution of this assumed solution in equation (16) leads to the followmg
relations to be satisfied by the functions Ui(z, 9):

a Uo—l
%) Vs = 2 '
where

(3, F\/ , &
v = (ot o) (o + 2%)

Now, if we introduce a complex variable z = z + 4, we can rewrite the relations

(18) in the form
» 4 4 4
v‘U.-=-—2("’— o +")U.-.1,

oz 9202
which are satisfied by
2441 ,
(19) Ui =R 2 om(2,
m==(}

in which the ;s (2) are analytic functions of z. :
It is easy to verify that the functions ¢;» must satisfy the conditions

8(m + 2)(m + 1)¢i miz = —&0m + 2(m + 2)(m + Dois miz
d — (m+ 4)(m + 3)(m + 2)(m + 1)pis msa.

If | x| > 1, we set « = 1/(1 — ¢) and again seek the solution in the form (17).
This time the U; satisfy the differential equation

¢
V'U; = ((.:;:4 . aﬂ) Uiy,

or
azz a2
where z = z -+ ¢n and the functions ¢;a(2) in (19) are bound by the rela.tlonS°

8(m + 2)(m + 1)¢; ,..+z = 080 m + 6(m + 2)(m + 1pils mi2
+ (m 4+ 4)(m + 3)(m + 2)(m + 1)pia ms-

4 64
v'U; = ( +6 —— + )U._l,
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In both of the foregoing cases ¢« and ¢, are arbitrary functions determined by
the boundary conditions.

We have already remarked that the first of the perturbation procedures de-
seribed in this section can be applied to the general case of anisotropic media with
only one plane of elastic syrametry which is typified by equation (1).

A special case of this procedure, applied to equation (16) is of interest.

- The characteristic equation (4) associated with equation (16) is

A+ 2’ + 1= 0.

If « > 1, the roots of this equation are pure imaginary, and we consider the case
for which the deviation parameters ¢; defined by

m=114+ea), m=1:1+e), p=1ihHh  w=j
are less than unity. The ¢; are related to « by the formula
% =21+ a+e) + &+ &
‘We assume that U is represented in the double series

U = 2 Uylz,n)eld,
£, §=0
with U;; = Uy, a.nd find that

. V‘Uij = axza 5 (2U0—1)‘ o= 2U,,.1U.._2, + U{j.z)

o' o !
VUy = (@ - 282’62" _‘>(2U,_1, + 2Ui5a + Uiaj + Uiz,
where 2 = z + 2.
These equations have solutions of the form
2442541

Ug=R 2. ¢um(2s™
M=)

where the analytic functions ¢;;. satisfy the recursion relations:

16(m + 2)(m + Deijmie
%ggl)in + ZPS‘;—) 1m + Sosi’ﬁ)zm + ¢£?—)2n
igial 2(m + 2)(m + 1) (2¢t-11 w2 + 2‘?11—1"*}2 + ‘Pt—! imi2 + ¢¢1—2m+1)
+ (m +4)(m +3)(m + 2) m + 1) (2pi1 jmis + 206 i1 mis +0itimis
+ @i -2 mie).

The functions ¢;; and ¢;; remain arbitrary and are subject to the determina-
tion from the boundary conditions.

It should be emphasized that the perturbational procedures described in this
section cannot be expected to yield satisfactory solutions where the media under
consideration are highly anisotropic. However, computations now in progress
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indicate that useful approximate solutions can be obtained even for such ani-
sotropic materials as wood.
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