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Preface

This book provides an introduction to discrete dynamical systems — a
framework of analysis that is commonly used in the fields of biology,
demography, ecology, economics, engineering, finance, and physics.

The book characterizes the fundamental factors that govern the
quantitative and qualitative trajectories of a variety of deterministic,
discrete dynamical systems, providing solution methods for systems
that can be solved analytically and methods of qualitative analysis for
those systems that do not permit or necessitate an explicit solution.

The analysis focuses initially on the characterization of the factors
that govern the evolution of state variables in the elementary context
of one-dimensional, first-order, linear, autonomous systems. The fun-
damental insights about the forces that affect the evolution of these el-
ementary systems are subsequently generalized, and the determinants
of the trajectories of multi-dimensional, nonlinear, higher-order, non-
autonomous dynamical systems are established.!

Chapter 1 focuses on the analysis of the evolution of state variables
in one-dimensional, first-order, autonomous systems. It introduces a
method of solution for these systems, and it characterizes the trajec-
tory of a state variable, in relation to a steady-state equilibrium of the
system, examining the local and global (asymptotic) stability of this
steady-state equilibrium. The first part of the chapter characterizes
the factors that determine the existence, uniqueness and stability of a
steady-state equilibrium in the elementary context of one-dimensional,
first-order, linear autonomous systems. Although linear dynamical
systems do not govern the evolution of the majority of the observed
dynamic phenomena, they serve as an important benchmark in the
analysis of the qualitative properties of the nonlinear systems in the

! For continuous dynamical systems see Arnold (1973), Hirsch and Smale (1974),
and Hale (1980).
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proximity of steady-state equilibria. The second part of the chapter
examines the trajectories of nonlinear systems based on the character-
ization of the linearized system in the proximity of a steady-state equi-
librium. The basic propositions established in Chapter 1 provide the
conceptual foundations for the analysis of multi-dimensional, higher-
order, non-autonomous, dynamical systems.

Chapter 2 analyzes the evolution of a vector of interdependent state
variables in multi-dimensional, first-order dynamical systems. It devel-
ops a method of solution for these systems, based on the construc-
tion of a time-independent transformation that converts the dynami-
cal system into a new one that is characterized by either independent
state variables whose evolution can be determined based on the analy-
sis of the one-dimensional case, or partially dependent state variables
whose evolution are determined by the well established properties of
the Jordan matrix. The analysis of linear multi-dimensional dynami-
cal systems provides an important reference point in the analysis of
multi-dimensional nonlinear systems in the proximity of their steady-
state equilibrium. It provides the characterization of the linear approx-
imation of multi-dimensional nonlinear systems around steady-state
equilibria.

Chapter 3 characterizes the trajectory of a vector of state variables
in multi-dimensional, first-order, linear dynamical systems. It examines
the trajectories of these systems when the matrix of coefficients has real
eigenvalues and the vector of state variables converges or diverges in a
monotonic or oscillatory fashion towards or away from a steady-state
equilibrium that is characterized by either a saddle point or a stable
or unstable (improper) node. In addition, it examines the trajectories
of these linear dynamical systems when the matrix of coefficients has
complex eigenvalues and the system is therefore characterized by a
spiral sink, a spiral source, or a periodic orbit.

Chapter 4 analyzes the trajectory of a vector of state variables in
multi-dimensional, first-order, nonlinear systems. It utilizes the charac-
terization of linear multi-dimensional systems to examine the trajectory
of the nonlinear systems in light of the Stable Manifold Theorem. In
particular, the analysis examines the properties of the local stable and
unstable manifolds, and the corresponding global stable and unstable
manifolds.

Chapter 5 characterizes the evolution of a vector of state variables in
higher-order as well as non-autonomous systems. It establishes the so-
lution method for these higher-order and non-autonomous systems and
it analyzes the factors that determine the qualitative properties of these
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discrete dynamical systems in the linear and subsequently the nonlin-
ear case. The analysis is based upon the transformation of higher-order
and non-autonomous systems into a multi-dimensional first-order sys-
tems that can be examined based on the analysis in Chaps. 2-4. In
particular, a one-dimensional second-order system is converted into
a two-dimensional first-order system, a one-dimensional third-order
system is transformed into a three-dimensional first-order system, a
one-dimensional n'"-order system is converted into an n-dimensional
first-order system, and an n- dimensional mt-order system is trans-
formed into an n x m- dimensional first-order system. Similarly, the
analysis of non-autonomous systems is based on their transformation
into higher-dimension, time-independent (autonomous) systems that
can be examined based on the analysis of multi-dimensional, first-order
systems in Chaps. 2-4.

Chapter 6 provides a complete characterization of several represen-
tative examples of two-dimensional dynamical systems. These examples
include a first-order linear system with real eigenvalues, a first-order lin-
ear system with complex eigenvalues that exhibits a periodic orbit, a
first-order linear system with complex eigenvalues that exhibits a spiral
sink, a first-order nonlinear system that is characterized by a oscillatory
convergence, and a second-order one-dimensional system converted into
a first-order, two-dimensional system characterized by a continuum of
equilibria and oscillatory divergence.

The book is designed for advanced undergraduate and graduate stu-
dents in the fields of demography, ecology, economics, engineering, evo-
lutionary biology, finance, mathematics, and physics, who are familiar
with differential calculus and linear algebra. Furthermore, it is a useful
reference for researchers of applied disciplines in which discrete dynam-
ical systems are commonly employed.

Providence, USA
October 2010 Oded Galor



Contents

1 One-Dimensional, First-Order Systems
1Y EAneamlis yatema ittt Bl bl L O ) I S it s
1.1.1 Characterization of the Solution ................
1.1.2 Existence of Steady-State Equilibria ............
1.1.3 Uniqueness of Steady-State Equilibria ...........
1.1.4 Stability of Steady-State Equilibria
1.2 Nonlinear Systems
12 MBhelBEIMGIOnN" «. s et i By o ot

1.2.2 Existence, Uniqueness and Multiplicity
of Steady-State Equilibria .....................

1.2.3 Linearization and Local Stability

of Steady-State Equilibria
1.2.4 Global Stability

2 Multi-Dimensional, First-Order, Linear Systems:
i R SR RN P o ok S e
2.1 Characterization of the Solution......................
2.2 Existence and Uniqueness of Steady-State Equilibria. . . .
2.3 Examples of Two-Dimensional Systems ...............

2.3.1 Explicit Solution and Stability Analysis .........
2.3.2 Stability Analysis Without an Explicit Solution ..
2.4 Properties of the Jordan Matrix......................
2.5 Representation of the System in the Jordan
Norraal IFOTI - & 0o 0 & i e o fwar sl hslisansbon (s i s b
2.5.1 Transformation of Non-Homogeneous Systems
into Homogeneous Ones ................c.0 00
2.5.2 The Solution in Terms of the Jordan
Normal Form



XIV Contents

3 Multi-Dimensional, First-Order, Linear Systems:

B Vo (0 (501 (0] 0 et SO SRl 1o (IR R B 59
3.1 . DistinetiRealsBipenvalues . . ... 0 0l ii o osieisats b . 59
3: 15151 Characterization of the SolUtion .. .. wu v inine iy 59
3.1.2 Phase Diagrams of Two-Dimensional Uncoupled
e T R e i -, ot el s, e B 62
32 Repefted ReblBITenvaltes « « ...t idie e ae o s oot s 68
3:2.1 Characterization, of the Solution . . ....... ... ... 68
3.2.2 Phase Diagram of the Two-Dimensional Case .... 71
3.3 Distinct Pairs of Complex Eigenvalues ................ it
3.3.1 Characterization of the Solution ................ 77
3.3.2 Phase Diagram of a Two-Dimensional System .... 82
3.4 Repeated Pairs of Complex Eigenvalues ............... 84
3.5 ThelGoneralSERERERa &bt s o0 b T sl ot diiry 86
3.6 Characterization of Two-Dimensional Systems in Terms
of Al e dSdetEai hw sibeia o s la ok S e ke 87
4 Multi-Dimensional, First-Order, Nonlinear Systems .. 93
ol 70 1o 1S e i g Sl o b e sidien. oo e e I 96
L VT i o o s ol ARSI it Bl U 96
4.1.2 Stable, Unstable, and Center Eigenspaces........ 98
4.1.3 Local Stable and Unstable Manifolds . ........... 101
4.1.4 (ifhe StableManifold Theorem =, . S0y 500 S e 102
422 GlobalsANSIVSIBEE e = e i . T ] L s 104
5 Higher-Order and Non-Autonomous Systems ........ 107
51 Higher=Order.Systems ... .. F3IS0IT ARINES S8, Lk 107
5 IS BATESTERING. Lt b et o ol S s 107
5. 15 S MINOTINEATRSYEUBINIS 2. % & o, 2« o5y o riaie e SAd e e RSy 1]
0.2+ INODN=ANGONOIHIOUS OVSEEIRS .. 1. (5 b s gt s A% s Ao 112
6 Examples of Two-Dimensional Systems ............ .. 115
6.1 - First-Order Thinear Systemsyl 0 Uor L w STLae nd, b 115
6.1.1 Real, Distinct, Positive Eigenvalues ............. 115
6.1.2 Complex Eigenvalues - Periodic Orbit ........... 126
6.1.3 Complex Eigenvalues - Spiral Sink .............. 133
6.2 Second-Order Linear Systems:. s/ &) SHIL Easnig o, b 137
6.3 - Nonlinear SYStRIES -« . oo do. g oo SRICEISEREE | 144
EH GRS AT i R T L ey s e aa e SR S 147
FCTETONCOSE: T PRSI M L0 | Bty S S el e n i e DR O 149
oo Tl n Ao O BN o D St 151



d

One-Dimensional, First-Order Systems

This chapter analyzes the evolution of a state variable in one-dimensio-
nal, first-order, discrete dynamical systems. It introduces a method of
solution for these systems, and it characterizes the trajectory of the
state variable, in relation to its steady-state equilibrium, examining the
local and global (asymptotic) stability of this steady-state equilibrium.

The first part of the chapter characterizes the factors determining
the existence, uniqueness and stability of a steady-state equilibrium
in the elementary context of one-dimensional, first-order, linear au-
tonomous systems. Although linear dynamical systems do not neces-
sarily govern the evolution of the majority of the observed dynamic
phenomena, they serve as an important benchmark in the analysis of
the qualitative properties of nonlinear systems, providing the character-
ization of the linear approximation of nonlinear systems in the proxim-
ity of steady-state equilibria. The second part of the chapter examines
the trajectories of nonlinear systems based on the characterization of
the linearized system in the proximity of a steady-state equilibrium.

The basic propositions derived in this chapter provide the conceptual
foundations for the generalization of the analysis and the characteri-
zation of multi-dimensional, higher-order, non-autonomous, dynamical
systems.

The qualitative analysis of these dynamical systems is based upon
the examination of the factors that determine the actual trajectory of
the state variable. However, as will become apparent, once the basic
propositions that characterize the properties of these systems are de-
rived, an explicit solution is no longer required in order to characterize
the nature of these dynamical systems.



2 1 One-Dimensional, First-Order Systems

1.1 Linear Systems

Consider a one-dimensional, first-order, autonomous, linear difference
equation that governs the evolution of a state variable, y;, over time.

Yt+1 :uyt+bv t:071~,2~,35"" (11)

where the value of the state variable at time ¢, vy, is a real number,
ie., y; € R, the parameters a and b are constant real numbers, namely
a,b € R, and the initial value of the state variable at time 0, yo, is
given.!

The system is defined as a one-dimensional, first-order, autonomous,
linear difference equation since it describes the evolution of a one-
dimensional state variable, y;11, whose value depends in a linear and
time-independent (autonomous) fashion on its value in the pervious
period (first-order), y;.

1.1.1 Characterization of the Solution

A solution to the difference equation w1 = ay; + b is a trajectory
(or an orbit) of the state variable, {y;}72,, that satisfies this law of
motion at any point in time. It relates the value of the state variable
at time ¢, 1, to its initial value, yp, and to the parameters a and b.

The derivation of a solution may follow several methods. In partic-
ular, the intuitive method of iterations generates a pattern that can be
easily generalized to a solution rule.

Given the value of the state variable at time 0, g, the dynamical
system y; 11 = ay; + b implies that the value of the state variable at
time 1, vy, 1s

y1 = ayo + b. (1.2)

Given the value of the state variable at time 1, y;, the value of the state
variable at time 2, ys, is uniquely determined.

yo = ayy + b= a(ayo + b) + b = a®yo + ab + b. (1.3)

' Without loss of generality, the feasible domain of the time variable, ¢, is truncated
to be the set of non-negative integers. Moreover, the initial condition is defined
as the value of the state variable at time 0. In general, ¢ can be defined to be
an element of any subset of the set of integers, and the initial value of the state
variable, yo, can be given at any point within this interval.
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Similarly, the value of the state variable at time 3,4, ...,t, is

ys =ays + b =a(a’yo +ab+b) + b= a’yo +a’b+ab+b

(1.4)
v = alyo+at"tb+at"2b+ ... + ab+b.
Henee, fort = 1,2, ..,
t—-1
ye=ayo+b» a'. (1.5)
i=0

. SR s 3 : &
Since Y_'ja' is the sum of the geometric series, {1,a,a?,a%,..a*"'},

whose factor is a, it follows that

‘ 1-a lf a7é 1
P (1.6)
1=0 t 'Lf A= ]-1

and therefore

atyo-i-b% if o 3% 1

Il

Yt (1.7)

yo + bt if ol

Alternatively,

o—tZ5le'+525  if  a#l

Yt (1.8)

yo + bt 1 ai—il

Thus, as long as an initial condition of the state variable is given,
the entire trajectory of the state variable is uniquely determined.
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The trajectory derived in (1.8) reveals the qualitative role of the pa-
rameter a, and to a lesser extent b, in the evolution of the state variable
over time. These parameters determine whether the dynamical system
evolves monotonically or in oscillations, and whether the state vari-
able converges in the long run to a steady-state equilibrium, diverges
asymptotically to plus or minus infinity, or displays a two-period cycle.
Hence, a qualitative examination of a dynamical system requires the
analysis of the asymptotic behavior of the system as time approaches
infinity.

1.1.2 Existence of Steady-State Equilibria

Steady-state equilibria provide an essential reference point for a qual-
itative analysis of the behavior of dynamical systems. A steady-state
equilibrium (alternatively defined as a stationary equilibrium, a rest
point, an equilibrium point, or a fized point) is a value of the state
variable y; that is invariant under the law of motion dictated by the
dynamical system.

Definition 1.1. (A Steady-State Equilibrium,)
A steady-state equilibrium of the difference equation yi+1 = ay+0b is
7 € R such that

y=ay+b.

Thus, if the state variable is at a steady-state equilibrium, it will re-
main there in the absence of any perturbations of the dynamical system
due to either changes in the parameters a and b or direct perturbations
in the value of the state variable itself. Namely, if y; = y then ys = 3
for all s > t.

As follows from Definition 1.1, as long as a # 1, there exists a
unique steady-state equilibrium § = b/(1—a) for the difference equation
Yi+1 = ay + b. However, given the linear structure of the dynamical
system, if a = 1 and b = 0 then in every time ¢, y;+1 = y; and the state
variable does not deviate from its initial condition. In particular, y; =
Yt—1 = Yt—2 = ... = yo and the system is in a steady-state equilibrium
where § = yo. In contrast, if ¢« = 1 and b # 0, a steady-state
equilibrium does not exist, and the state variable increases indefinitely
if b > 0, or decreases indefinitely if b < 0.

Hence, following Definition 1.1,

= if a#l
Yo if a.=1 and: =10,
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Thus, the necessary and sufficient conditions for the existence of a
steady-state equilibrium are given by the values of the parameters a
and b, as stated in (1.9), that permit the system to have a steady-state
equilibrium.

Proposition 1.2. (Ezistence of Steady-State Equilibrium)
A steady-state equilibrium of the difference equation y,.+1 = ay, + b
exists if and only if

{a#1} or {a=1 and b= 0}.

Hence, given the steady-state level of the state variable, vy, as de-
rived in (1.9), the solution to the difference equation y;+1 = ay, + b
can be expressed in terms of the deviations of the initial value of the
state variable, yo, from its steady-state value, . Namely, substituting
the value of 7 into the solution given by (1.8), it follows that

(yo—7)a' +7 if a#1
L (1.10)
yo + bt if o =1

1.1.3 Uniqueness of Steady-State Equilibria

A steady-state equilibrium of the linear dynamical system, y;1 = ay;+
b, is not necessarily unique. As depicted in Figs. 1.1, 1.3, 1.7, 1.9 and
1.10 for a # 1. the steady-state equilibrium is unique. However, as
depicted in Fig. 1.5, for a =1 and b =0, a continuum of steady-state
equilibria exists, reflecting the entire set of feasible initial conditions.

Necessary and sufficient conditions for the uniqueness of a steady-
state equilibrium are given by the values of the parameters a and b, as
stated in (1.9), that permits the system to have a distinct steady-state
equilibrium.

Proposition 1.3. (Uniqueness of Steady-State Equilibrium)

A steady-state equilibrium of the difference equation yi+1 = aye+b is
unique if and only if

a F



6 1 One-Dimensional, First-Order Systems
1.1.4 Stability of Steady-State Equilibria

The stability analysis of the system’s steady-state equilibria determines
whether a steady-state equilibrium is attractive or repulsive for all or
at least some set of initial conditions. It facilitates the study of the
local, and often the global, properties of a dynamical system, and it
permits the analysis of the implications of small, and sometimes large,
perturbations that occur once the system is in the vicinity of a steady-
state equilibrium.

A steady-state equilibrium is globally (asymptotically) stable if the
system converges to this steady-state equilibrium regardless of the level
of the initial condition, whereas a steady-state equilibrium is locally
(asymptotically) stable if there exists an e- neighborhood of the steady-
state equilibrium such that from every initial condition within this
neighborhood the system converges to this steady-state equilibrium.
Formally the definitions of local and global stability are as follows:?

Definition 1.4. (Local and Global Stability of a Steady-State Equilib-
rium,)

A steady-state equilibrium, 7, of the difference equation yi+1 = ay; +b
18

e globally (asymptotically) stable if
limy, =y Vyo € R;
t—o0

e locally (asymptotically) stable if

tlim Yyt =7 Yyo such that |yo — 7| < € for some € > 0.
—00

Alternatively, if the state variable is in a steady-state equilibrium
and upon a sufficiently small perturbation it converges asymptotically
back to this steady-state equilibrium, then this equilibrium is locally
stable. However, if regardless of the magnitude of the perturbation the

? The economic literature, to a large extent, refers to the stability concepts in
Definition 4.2 as global stability and local stability, respectively, whereas the
mathematical literature refers to them as global asymptotic stability and local
asymptotic stability, respectively. The concept of stability in the mathematical
literature is reserved to situations in which trajectories that are initiated from
an e-neighborhood of a fixed point remain sufficiently close to this fixed point
thereafter.
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state variable converges asymptotically to this steady-state equilibrium,
then the equilibrium is globally stable.

Global stability of a steady-state equilibrium necessitates the global
uniqueness of the steady-state equilibrium. If there is more than one
steady-state equilibrium, none of the equilibria can be globally stable
since there exist at least two points in the relevant space from which
there is no escape and convergence from each of these steady-state
equilibria to the other steady-state equilibrium is therefore not feasible.

Proposition 1.5. (Necessary Condition for Global Stability of Steady-
State Equilibrium)
A steady-state equilibrium of the difference equation yi+1 = ayi + b

is globally (asymptotically) stable only if the steady-state equilibrium is
unique.

Local stability of a steady-state equilibrium necessitates the local
uniqueness of the steady-state equilibrium. Namely, the absence of any
additional point in the neighborhood of the steady-state from which
there is no escape. If the system is characterized by a continuum of
equilibria none of these steady-state equilibria is locally stable. There
exists no neighborhood of a steady-state equilibrium that does not con-
tain additional steady-state equilibria, and hence there exist initial con-
ditions within an e- neighborhood of a steady-state equilibrium that do
not lead to this steady-state equilibrium in the long run. Thus, local
stability of a steady-state equilibrium requires the local uniqueness of
this steady-state equilibrium.

If the system is linear there is either unique steady-state equilibrium
or continuum of (unstable) steady-state equilibria. Local uniqueness of
a steady-state equilibrium therefore implies global uniqueness, and local
stability therefore necessarily implies global stability.

As follows from the definitions of local and global stability, the sta-
bility of a steady-state equilibrium can be obtained by the examination
of the properties of the system as time approaches infinity.

As follows from the solution for the difference equation y¢4+1 = ay; +
b, given by (1.10),

[yo — 9] limy—ooa® + 7 if el
lim y; = (1.11)
i Yo+ blimy_, ot if a= 1

and therefore the limit of the absolute value of the state variable, |y;|,
is
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;

if {la| <1} or

Yy : L
g {lal > 1 & yo = 7}
lyol s o S8 bi=i0
tlllgo lvel = lyol Forit = 0,25y
il
|b — yo| for t=1,3,5,...
00 otherwise.

(1.12)

Thus, as follows from the property of the absolute value of the state
variable y;, as time approaches infinity, the absolute value of the pa-
rameter a and the value of b determine the long run value of the state
variable. Moreover, the absolute value of the parameter a determines
whether a steady-state equilibrium ¢ is globally stable.

In particular, in the feasible range of the parameter a and b, the
dynamical system exhibits five qualitatively different trajectories, char-
acterized by the existence of a unique and globally stable steady-state
equilibrium, a unique unstable, steady-state equilibrium, continuum of
steady-state equilibria, inexistence of steady-state equilibria, and two-
period cycles.

A. Unique Globally Stable Steady-State
Equilibrium (|a| < 1)

If the coefficient |a| < 1, then the system is globally (asymptoti-
cally) stable converging to the steady-state equilibrium 7 = b/(1 — a),
regardless of the initial condition, yo. In particular, if 0 < a < 1, then
as depicted in the phase diagram in Fig. 1.1, the evolution of the state
variable is characterized by monotonic convergence towards the steady-
state equilibrium gy regardless of the initial level of the state variable, yq.

The steady state locus y;4+1 = y; intersects with the linear difference
equation, y;+1 = ay; + b, at the steady-state equilibrium y. Given yq,
the value of y; = ayp + b can be read from corresponding value along
the line y;11 = ayy + b. This value of y; can be mapped back to the
y axis via the 45° line. Similarly, given y;, the value of yo = ay; + b
can be read from the corresponding value along the line ;11 = ay; + b
and mapped back to the y; axis via the 45° line. Hence, as depicted in
Fig. 1.1, the state variable evolves along the depicted arrows of motion
and converges monotonically to the steady-state equilibrium 7.



