MARCUS KRACHT

The Mathematics
of Language

~ STUDIES IN




The Mathematics of Language

by
Marcus Kracht

Mouton de Gruyter
Berlin - New York 2003



Mouton de Gruyter (formerly Mouton, The Hague)
is a Division of Walter de Gruyter GmbH & Co. KG, Berlin.

The series Studies in Generative Grammar was formerly published by
Foris Publications Holland.

Kracht, Marcus.

The mathematics of language / by Marcus Kracht.

p. cm. — (Studies in generative grammar ; 63)

Includes bibliographical references and index.

ISBN 3-11-017620-3 (alk. paper)

. Mathematical linguistics. 1. Title.  II. Series.

P138 .K73 2003

410'.1'51—dc21

2003016857

Printed on acid-free paper which falls within the guidelines
of the ANSI to ensure permanence and durability.

ISBN 3-11-017620-3

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in the
Internet at <http://dnb.ddb.de>.

© Copyright 2003 by Walter de Gruyter GmbH & Co. KG, D-10785 Berlin.

All rights reserved, including those of translation into foreign languages. No part of this
book may be reproduced in any form or by any means, electronic or mechanical, including
photocopy, recording, or any information storage and retrieval system, without permission
in writing from the publisher.

Cover design: Christopher Schneider, Berlin.

Printed in Germany.



The Mathematics of Language

DE




Studies in Generative Grammar 63

Editors

Henk van Riemsdijk
Harry van der Hulst
Jan Koster

Mouton de Gruyter
Berlin - New York



Was dann nachher so schon fliegt . . .
wie lange ist darauf rumgebriitet worden.

Peter Riihmkorf: Phénix voran



Preface

The present book developed out of lectures and seminars held over many
years at the Department of Mathematics of the Freie Universitit Berlin, the
Department of Linguistics of the Universitit Potsdam and the Department of
Linguistics at UCLA. I wish to thank in particular the Department of Math-
ematics at the Freie Universitdt Berlin as well as the Freie Universitit Berlin
for their support and the always favourable conditions under which I was
allowed to work. Additionally, I thank the DFG for providing me with a
Heisenberg—Stipendium, a grant that allowed me to continue this project in
between various paid positions.

I have had the privilege of support by Hans—Martin Gértner, Ed Keenan,
Hap Kolb and Uwe Monnich. Without them I would not have had the energy
to pursue this work and fill so many pages with symbols that create so much
headache. They always encouraged me to go on.

Lumme Erilt, Greg Kobele and Jens Michaelis have given me invalu-
able help by scrupulously reading earlier versions of this manuscript. Fur-
ther, I wish to thank Helmut Alt, Christian Ebert, Benjamin Fabian, Stefanie
Gehrke, Timo Hanke, Wilfrid Hodges, Gerhard Jiger, Makoto Kanazawa,
Franz Koniecny, Thomas Kosiol, Ying Lin, Zsuzsanna Lipt4k, Istvin Németi,
Terry Parsons, Alexis—-Manaster Ramer, Jason Riggle, Stefan Salinger, Ed
Stabler, Harald Stamm, Peter Staudacher, Wolfgang Sternefeld and Ngassa
Tchao for their help.

Los Angeles and Berlin, September 2003 Marcus Kracht



Introduction

This book is — as the title suggests — a book about the mathematical study
of language, that is, about the description of language and languages with
mathematical methods. It is intended for students of mathematics, linguis-
tics, computer science, and computational linguistics, and also for all those
who need or wish to understand the formal structure of language. It is a math-
ematical book; it cannot and does not intend to replace a genuine introduction
to linguistics. For those who are not acquainted with general linguistics we
recommend (Lyons, 1968), which is a bit outdated but still worth its while.
For a more recent book see (Fromkin, 2000). No linguistic theory is discussed
here in detail. This text only provides the mathematical background that will
enable the reader to fully grasp the implications of these theories and un-
derstand them more thoroughly than before. Several topics of mathematical
character have been omitted: there is for example no statistics, no learning
theory, and no optimality theory. All these topics probably merit a book of
their own. On the linguistic side the emphasis is on syntax and formal seman-
tics, though morphology and phonology do play a role. These omissions are
mainly due to my limited knowledge. However, this book is already longer
than I intended it to be. No more material could be fitted into it.

The main mathematical background is algebra and logic on the semantic
side and strings on the syntactic side. In contrast to most introductions to for-
mal semantics we do not start with logic — we start with strings and develop
the logical apparatus as we go along. This is only a pedagogical decision.
Otherwise, the book would start with a massive theoretical preamble after
which the reader is kindly allowed to see some worked examples. Thus we
have decided to introduce logical tools only when needed, not as overarching
concepts.

We do not distinguish between natural and formal languages. These two
types of languages are treated completely alike. I believe that it should not
matter in principle whether what we have is a natural or an artificial prod-
uct. Chemistry applies to naturally occurring substances as well as artificially
produced ones. All I will do here is study the structure of language. Noam
Chomsky has repeatedly claimed that there is a fundamental difference be-
tween natural and nonnatural languages. Up to this moment, conclusive evi-
dence for this claim is missing. Even if this were true, this difference should



X Introduction

not matter for this book. To the contrary, the methods established here might
serve as a tool in identifying what the difference is or might be. The present
book also is not an introduction to the theory of formal languages; rather, it
is an introduction to the mathematical theory of linguistics. The reader will
therefore miss a few topics that are treated in depth in books on formal lan-
guages on the grounds that they are rather insignificant in linguistic theory.
On the other hand, this book does treat subjects that are hardly found any-
where else in this form. The main characteristic of our approach is that we
do not treat languages as sets of strings but as algebras of signs. This is much
closer to the linguistic reality. We shall briefly sketch this approach, which
will be introduced in detail in Chapter 3.

A sign 0 is defined here as a triple (e, c,m), where e is the exponent of o,
which typically is a string, c the (syntactic) category of o, and m its mean-
ing. By this convention a string is connected via the language with a set of
meanings. Given a set X of signs, ¢ means m in I if and only if (= iff) there
is a category ¢ such that (e,c,m) € L. Seen this way, the task of language
theory is not only to say which are the legitimate exponents of signs (as we
find in the theory of formal languages as well as many treatises on generative
linguistics which generously define language to be just syntax) but it must
also say which string can have what meaning. The heart of the discussion is
formed by the principle of compositionality, which in its weakest formulation
says that the meaning of a string (or other exponent) is found by homomor-
phically mapping its analysis into the semantics. Compositionality shall be
introduced in Chapter 3 and we shall discuss at length its various ramifica-
tions. We shall also deal with Montague Semantics, which arguably was the
first to implement this principle. Once again, the discussion will be rather ab-
stract, focusing on mathematical tools rather than the actual formulation of
the theory. Anyhow, there are good introductions to the subject which elim-
inate the need to include details. One such book is (Dowty et al., 1981) and
the book by the collective of authors (Gamut, 1991b). A system of signs is
a partial algebra of signs. This means that it is a pair (Z, M), where ¥ is a
set of signs and M a finite set, the set of so—called modes (of composition).
Standardly, one assumes M to have only one nonconstant mode, a binary
function e, which allows one to form a sign 0, ® 0, from two signs o and o,.
The modes are generally partial operations. The action of e is explained by
defining its action on the three components of the respective signs. We give a



Introduction xi

simple example. Suppose we have the following signs.

‘runs’ = (rums,v,p)
‘Paul’ = (Paul,n,7)

Here, v and n are the syntactic categories (intransitive) verb and proper name,
respectively. 7 is a constant, which denotes an individual, namely Paul, and p
is a function from individuals to the set of truth values, which typically is the
set {0,1}. (Furthermore, p(x) = 1 if and only if x is running.) On the level
of exponents we choose word concatenation, which is string concatenation
(denoted by ~) with an intervening blank. (Perfectionists will also add the
period at the end...) On the level of meanings we choose function application.
Finally, let o be a partial function which is only defined if the first argument
is n and the second is v and which in this case yields the value z. Now we put

(e1,¢1,my) @ {ey,¢p,myp) = (€70 ey, ¢q 0 ¢y (my))
Then ‘Paul’ e ‘runs’ is a sign, and it has the following form.
‘Paul’e ‘runs’ := (Paul runms,?,p (7))

We shall say that this sentence is true if and only if p(7) = 1; otherwise we
say that it is false. We hasten to add that ‘Paul’ e ‘Paul’ is nor a sign. So,
e is indeed a partial operation.

The key construct is the free algebra generated by the constant modes
alone. This algebra is called the algebra of structure terms. The structure
terms can be generated by a simple context free grammar. However, not ev-
ery structure term names a sign. Since the algebras of exponents, categories
and meanings are partial algebras, it is in general not possible to define a ho-
momorphism from the algebra of structure terms into the algebra of signs.
All we can get is a partial homomorphism. In addition, the exponents are
not always strings and the operations between them not only concatenation.
Hence the defined languages can be very complex (indeed, every recursively
enumerable language ¥ can be so generated).

Before one can understand all this in full detail it is necessary to start off
with an introduction into classical formal language theory using semi Thue
systems and grammars in the usual sense. This is what we shall do in Chap-
ter 1. It constitutes the absolute minimum one must know about these matters.
Furthermore, we have added some sections containing basics from algebra,



xii Introduction

set theory, computability and linguistics. In Chapter 2 we study regular and
context free languages in detail. We shall deal with the recognizability of
these languages by means of automata, recognition and analysis problems,
parsing, complexity, and ambiguity. At the end we shall discuss semilinear
languages and Parikh’s Theorem.

In Chapter 3 we shall begin to study languages as systems of signs. Sys-
tems of signs and grammars of signs are defined in the first section. Then
we shall concentrate on the system of categories and the so—called categorial
grammars. We shall introduce both the Ajdukiewicz—Bar Hillel Calculus and
the Lambek—Calculus. We shall show that both can generate exactly the con-
text free string languages. For the Lambek—Calculus, this was for a long time
an open problem, which was solved in the early 1990s by Mati Pentus.

Chapter 4 deals with formal semantics. We shall develop some basic con-
cepts of algebraic logic, and then deal with boolean semantics. Next we shall
provide a completeness theorem for simple type theory and discuss various
possible algebraizations. Then we turn to the possibilities and limitations of
Montague Semantics. Then follows a section on partiality and presupposition.

In the fifth chapter we shall treat so—called PTIME languages. These are
languages for which the parsing problem is decidable deterministically in
polynomial time. The question whether or not natural languages are con-
text free was considered settled negatively until the 1980s. However, it was
shown that most of the arguments were based on errors, and it seemed that
none of them was actually tenable. Unfortunately, the conclusion that natu-
ral languages are actually all context free turned out to be premature again.
It now seems that natural languages, at least some of them, are not context
free. However, all known languages seem to be PTIME languages. Moreover,
the so—called weakly context sensitive languages also belong to this class. A
characterization of this class in terms of a generating device was established
by William Rounds, and in a different way by Annius Groenink, who intro-
duced the notion of a literal movement grammar. We shall study these types
of grammars in depth. In the final two sections we shall return to the question
of compositionality in the light of Leibniz’ Principle, and then propose a new
kind of grammars, de Saussure grammars, which eliminate the duplication of
typing information found in categorial grammar.

The sixth chapter is devoted to the logical description of language. This
approach has been introduced in the 1980s and is currently enjoying a revival.
The close connection between this approach and the so—called constraint—
programming is not accidental. It was proposed to view grammars not as



Introduction  xiii

generating devices but as theories of correct syntactic descriptions. This is
very far away from the tradition of generative grammar advocated by Chom-
sky, who always insisted that language contains a generating device (though
on the other hand he characterizes this as a theory of competence). However,
it turns out that there is a method to convert descriptions of syntactic struc-
tures into syntactic rules. This goes back to ideas by Biichi, Wright as well
as Thatcher and Doner on theories of strings and theories of trees in monadic
second order logic. However, the reverse problem, extracting principles out of
rules, is actually very hard, and its solvability depends on the strength of the
description language. This opens the way into a logically based language hi-
erarchy, which indirectly also reflects a complexity hierarchy. Chapter 6 ends
with an overview of the major syntactic theories that have been introduced in
the last 25 years.

NOTATION. Some words concerning our notational conventions. We use
typewriter font for true characters in print. For example: Maus is the German
word for ‘mouse’. Its English counterpart appears in (English) texts either as
mouse or as Mouse, depending on whether or not it occurs at the beginning
of a sentence. Standard books on formal linguistics often ignore these points,
but since strings are integral parts of signs we cannot afford this here. In
between true characters in print we also use so—called metavariables (place-
holders) such as a (which denotes a single letter) and ¥ (which denotes a
string). The notation c; is also used, which is short for the true letter ¢ fol-
lowed by the binary code of i (written with the help of appropriately chosen
characters, mostly 0 and 1). When defining languages as sets of strings we
distinguish between brackets that appear in print (these are ( and )) and those
which are just used to help the eye. People are used to employ abbreviatory
conventions, for example 5+7+4 in place of (5+(7+4)). Similarly, in logic
one uses poA (7p4) or even pyA-p, in place of (pyA(-p,)). We shall follow
that usage when the material shape of the formula is immaterial, but in that
case we avoid using the true function symbols and the true brackets ‘(’ and
)’, and use ‘(" and )’ instead. For pyA(=p,) is actually nor the same as
(poA(-p1)). To the reader our notation may appear overly pedantic. How-
ever, since the character of the representation is part of what we are studying,
notational issues become syntactic issues, and syntactical issues simply can-
not be ignored. Notice that ‘(" and )’ are truly metalinguistic symbols that
are used to define sequences. We also use sans serife fonts for terms in for-
malized and computer languages, and attach a prime to refer to its denotation
(or meaning). For example, the computer code for a while-loop is written



xiv Introduction

semi—formally as while i < 100 do x := x X (x+i) od. This is just a string
of symbols. However, the notation see’(john’, paul’) denotes the proposition
that John sees Paul, not the sentence expressing that.



Contents

0NN N AW =W NN WD =N NN AW

WV h WD =&

Fundamental Structures

Algebras and Structures . . . . . .. .. ... ... L.
Semigroupsand Strings . . . ... ... ............
Fundamentals of Linguistics . . . ... ... .........
Trees . . . . . . e
Rewriting Systems . . . . ... ... .............
Grammar and Structure . . . ... ... ... ... ...,
Turingmachines . . . . ... .. ... .............

Context Free Languages

Regular Languages . ... ... ................
NormalForms . . . . . . .. ... ... ... ..........
Recognition and Analysis . . . . . ... ............
Ambiguity, Transparency and Parsing Strategies . . . . . . . .
Semilinear Languages . . . . .. ................
Parikh’s Theorem

Categorial Grammar and Formal Semantics

Languages as Systemsof Signs . . . . . ... ... ......
Propositional Logic . . . . ... ... .............
Basics of A—Calculus and Combinatory Logic
The Syntactic Calculus of Categories
The AB-Calculus . . . ... .. ................
The Lambek—Calculus
Pentus’ Theorem

Semantics
The Nature of Semantical Representations
Boolean Semantics
Intensionality . . . ... .. .. ... .. ...........
Binding and Quantification
Algebraization



xvi Contents

6 Montague Semantics IT . . . . . ... ... .......... 343
7 Partiality and Discourse Dynamics . . . ... ... ... ... 354
5 PTIME Languages 367
1 Mildly—Context Sensitive Languages . . . . . .. .. ... .. 367
2 Literal Movement Grammars . . . . . ... .......... 381
3 Interpreted LMGs . . . . ... ... ... .. ... . ..... 393
4 Discontinuity . . . ... ... ... ... ... ... ..... 401
5 AdjunctionGrammars . . . . .. . ... ... ... ... 414
6 Index Grammars . . . . ... .. ................ 424
7 Compositionality and Constituent Structure . . . . .. .. .. 434
8 de Saussure Grammars . . . . ... ... ... L. ... 447
6 The Model Theory of Linguistic Structures 461
1 Categories . . . . . . . . ... ... 461
2 Axiomatic Classes I: Strings . . . ... ... ......... 470
3 Categorization and Phonology . . . .. ... ... ...... 485
4 Axiomatic Classes II: Exhaustively Ordered Trees . . . . . . . 505
5 Transformational Grammar . . . . ... ... ... ...... 515
6 GPSGandHPSG . ... .................... 529
7 Formal Structures of GB . . . . ... ... ... ....... 540
Bibliography 555

Index 573



Chapter 1
Fundamental Structures

1. Algebras and Structures

In this section we shall provide definitions of basic terms and structures which
we shall need throughout this book. Among them are the notions of algebra
and structure. Readers for whom these are entirely new are advised to read
this section only cursorily and return to it only when they hit upon something
for which they need background information.

We presuppose some familiarity with mathematical thinking, in particu-
lar some knowledge of elementary set theory and proof techniques such as
induction. For basic concepts in set theory see (Vaught, 1995) or (Just and
Weese, 1996; Just and Weese, 1997); for background in logic see (Goldstern
and Judah, 1995). Concepts from algebra (especially universal algebra) can
be found in (Burris and Sankappanavar, 1981) and (Gritzer, 1968), and in
(Burmeister, 1986) and (Burmeister, 2002) for partial algebras; for general
background on lattices and orderings see (Gritzer, 1971) and (Davey and
Priestley, 1990).

We use the symbols U for the union, N for the intersection of two sets.
Instead of the difference symbol M\N we use M — N. & denotes the empty
set. g2(M) denotes the set of subsets of M, #in(M) the set of finite subsets
of M. Sometimes it is necessary to take the union of two sets that does not
identify the common symbols from the different sets. In that case one uses
+. We define M +N := M x {0} UN x {1} (x is defined below). This is
called the disjoint union. For reference, we fix the background theory of sets
that we are using. This is the theory ZFC (Zermelo Fraenkel Set Theory with
Choice). It is essentially a first order theory with only two two place relation
symbols, € and =. (See Section 3.8 for a definition of first order logic.) We
define x C y by (Vz)(z € x — x € y). Its axioms are as follows.

1. Singleton Set Axiom. (Vx)(3y)(Vz)(z €y <> z=1x).
This makes sure that for every x we have a set {x}.

2. Powerset Axiom. (Vx)(3y)(Vz)(z €y +> 2 C x).
This ensures that for every x the power set (x) of x exists.



2 Fundamental Structures

3. Set Union. (Vx)(3y)(Vz)(z €y ¢ (Fu)(z € uAu € x)).
u is denoted by [J,¢, z or simply by (Jx. The axiom guarantees its exis-
tence.

4. Extensionality. (Vx)(Vy)(x =y ¢ (Vz)(z € x & z € Y)).

5. Replacement. If f is a function with domain x then the direct image of
x under f is a set. (See below for a definition of function.)

6. Weak Foundation.

(Wx)(x#2 = () exA(Vz)(zeEx—z2€Y)))

This says that in every set there exists an element that is minimal with
respect to €.

7. Comprehension. If x is a set and @ a first order formula with only y
occurring free, then {y :y € x A @(y)} also is a set.

8. Axiom of Infinity. There exists an x and an injective function f: x — x
such that the direct image of x under f is not equal to x.

9. Axiom of Choice. For every set of sets x there is a function f : x — (Jx
with f(y) € yforall y € x.

We remark here that in everyday discourse, comprehension is generally ap-
plied to all collections of sets, not just elementarily definable ones. This dif-
ference will hardly matter here; we only mention that in monadic second
order logic this stronger from of comprehension is expressible and also the
axiom of foundation.

Full Comprehension. For every class P and every set x, {y : y € x and x € P}
is a set.

Foundation is usually defined as follows
Foundation. There is no infinite chain x; 3 x; 3 x, 3 ---.

In mathematical usage, one often forms certain collections of sets that can be
shown not to be sets themselves. One example is the collection of all finite
sets. The reason that it is not a set is that for every set x, {x} also is a set. The



