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I. Introduction

The pancreatic acinar cell has been a model for studying the various ultrastruc-
tural events involved in the synthesis, packaging, and release of secretory pro-
teins. Secretory proteins are synthesized on membrane-bound ribosomes,
sequestered within the lumen of the endoplasmic reticulum (ER), transported
through the Golgi, packaged into granules, moved to the cell membrane. and
then released by exocytosis (Case, 1978; Palade, 1975; Scheele, 1980). Subse-
quently, this model has been used (with some cell-specific modifications) to
explain the secretory processes of a large number of endocrine, exocrine, and
blood cells. .

In contrast, the biochemical events involved in the control of pancreatic secre-
tion are less well understood. In vivo, the major regulation of the exocrine
pancreas is via polypeptide hormones and cholinergic neurons. Two recent de-
velopments for studying acini in vitro have contributed to an understanding of the
regulation of pancreatic acinar cell function. First, hormone-sensitive prepara-

1
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2 IRA D. GOLDFINE AND JOHN A. WILLIAMS

tions of pancreatic acini have been developed. Second, biologically active, radi-
olabeled hormones have been prepared. This article will survey the recent studies
carried out in our laboratory and other laboratories to probe the receptors and
mechanism of action of two major polypeptide hormone regulators of the ex-
ocrine pancreas, cholecystokimin (CCK), and insulin.

I1. Isolated Pancreatic Acini for the Study of Exocrine Function

Amsterdam and Jamiesom (1972) were the first to devise a procedure for
preparing isolated pancreatic acinar cells which employed digestion of the pan-
creas with collagenase and_chymotrypsin, chelation of-divalent cations with
EDTA, and mechanical shearing. Similar preparations have now been used for
studies of acinar cell hormome receptors, ion fluxes, and cyclic nucleotide levels
(Christophe et al., 1976a,b; Gardner et al., 1975; Kondo and Schulz, 1976;
Williams, 1977; Williams ez al., 1976). The ability of secretagogues to induce
45Ca2+ efflux in isolated cells suggests that both hormone receptors and the
initial steps in stimulus—secretion coupling are intact. In most investigations,
however, the measurement of enzyme secretion (a distal event) by isolated acinar
cells has been difficult. For example, “amylase release from the perfused rat
pancreas is increased 8- to 20-fold by both acetylcholine and CCK (Kanno,
1972), whereas it is increased only 2-fold or less from isolated rat acinar cells
(Kondo and Schulz, 1976).

Fig. 1. Light micrograph of isolated mouse pancreatic acini.
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Fic. 2. Dose-response relationship for mylase release from isolated rat pancreatic acini in-
duced by CCK and its analogs. In each case, basal release was subtracted and secretagogue-induced

release was calculated as percentage of maximal release. All analogs induced a similar maximal
release. (From Williams er al., 1981.)

When the dissociation procedure is modified to produce isolated acini, a
considerably improved secretory response is observed (Peikin et al., 1978:
‘Schultz et al., 1980; Williams et al., 1978). Isolated acini are prepared in a
manner similar to that for isolated cells but without the calcium chelation step
necessary to break junctional complexes (Amsterdam and Jamieson, 1974). They
consist of groups of acinar (and occasionally centroacinar) cells arranged around
an intact lumen (Fig. 1). Ultrastructural evaluation reveals that the tight junctions
connecting adjacent acinar cells are maintained along with the microvilli and
their underlying microfilament network located at the apical border of the acinar
cell (Schultz er al., 1980; Williams et al., 1978). Since isolated acini can be
studied as a homogeneous suspension and have their basolateral plasma mem-
brane exposed to the incubation medium, they possess all the advantages of the
isolated cells. Moreover, it is possible to measure and correlate enzyme release
with other cellular functions, including occupancy of membrane receptors

~(Williams, 1980). Isolated pancreatic acivi have proven especially useful in
evaluating the complex dose—response curves for secretagogues such as the
neurotransmitter ACh and the hormone CCK (Fig. 2). Isolated acini have also
been utilized to study secretagogue inhibitors, including atropine for the cho-
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linergic agents and dibutyryl cyclic GMP for CCK (Peitkin et al., 1979;
Williams ez al., 1978). g

III. Cholecystokinin

A. BACKGROUND

Cholecystokinin (CCK) which was originally isolated from the porcine intes-
tine based on its ability to stimulate both gallbladder contraction and pancreatic
secretion, is a straight chain 33 amino acid peptide (CCK,) with an amidated C-
terminus (Jorpes and Mutt, 1973; Mutt and Jorpes, 1971). A prominent feature
of CCK is the presence of a sulfated tyrosine at position 27 (7 residues from the
C-terminus) (Table I). The C-terminal octapeptide’ (CCKg) possesses a high
degree of biological activity and is, in fact, more potent than CCK;; (Mutt and
Jorpes, 1968; Ondetti et al., 1970a,b). The unsulfated octapeptide, however, has
only 1/150 of the activity of the sulfated form (Gardner et al., 1975; Ondetti et
al., 1970a; Williams et al., 1981). The C-terminal tetrapeptide appears to con-
fain all the biological activity of CCK although it is 30,000-fold weaker than the
octapeptide whereas the C-terminal tripeptide or the deamidated tetrapeptide has
no activity (Morley et al., 1965; Rajh et al., 1980; Sankaran ez al., 1981a). CCK
is also structurally similar to the frog skin decapeptide, caerulein, which acts like
CCKjg (Anastasi et al., 1968).

Another notable feature of the C-terminal portion of CCK is its homology to
the similar portion of the gastrin molecule. The C-terminal pentapeptides of both
molecules are identical, and both CCK and some forms of gastrin contain a
sulfated tyrosine, although not in the identical position (Table I). Gastrin, how-
ever, has only weak effects on acinar cells (Fig. 2). Separate CCK and gastrin-
like molecules are only found in higher animals, such as reptiles, birds, and
mammals (Larsson and Rehfeld, 1977), but not lower animals. The basic biolog-
ical activity of CCK is contained in the C-terminal tetrapeptide amide (which is
shared with gastrin) whereas the additional amino acids are essential to increase
specificity for pancreas and gallbladder. .

B. EFrecTts ON ACINAR CELLS

Cholecystokinin has a number of actions on pancreatic acinar cells that have
been demonstrated both in vivo and in vitro (Table II). Injection of CCK in Vivo
leads to the release of zymogen granule contents into the acinar lumen. In some
species, especially rodents, CCK also stimulates the production of a Cl~-rich
pancreatic juice such that the secreted enzymes pass via the pancreatic ducts to
the intestine (Case, 1978). In some other species, such as the cat, fluid secretion
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TABLE 1I
EFFECTS OF CHOLECYSTOKININ ON PANCREATIC ACINAR CELLS

. Zymogen synthesis and secretion

. Secretion of Cl—-rich pancreatic juice

.. Pancreatic hypertrophy and hyperplasia

. Increased glucose and amino acid utilization and oxygen consumption

H W N -

is bicarbonate rich and requires stimulation by the hormone secretin. CCK in
vivo also accelerates the synthesis of digestive enzymes, indicating coordinated
stimulation of zymogen synthesis and secretion (Case, 1979; Webster et al.,
1977). More detailed studies suggest that CCK may regulate the synthesis of
specific pancreatic zymogens (Dagorn and Mongeau, 1977). Chronic stimulation
with either CCK or its analogs for 5—15 days also induces pancreatic hypertrophy
and hyperplasia due to an increase in structural proteins and nucleic acids as well
as zymogen (Mainz et al., 1973; Solomon et al., 1978).

In vitro studies of the effects of CCK and the mechanisms involved have
largely been carried out with isolated pancreatic acini. Secretion by isolated
pancreatic acini is usually quantitated by measuring either the amount of a
specific, easily measured digestive enzyme such as amylase (Fig. 2) or by pulse
labeling the newly synthesized zymogen with radioactive amino acid. Enzyme
secretion is an event that is clearly separated from enzyme synthesis, as secretion
can take place even when protein synthesis is inhibited (Jamieson and Palade,
1971; Otsuki and Williams, 1982b). The predominant view is that all pancreatic
zymogens are secreted in parallel by exocytosis and in proportion to their pan-
creatic content, implying a single control process (Case, 1978; Palade, 1975).
An alternative view is that the secretion of digestive enzymes is controlled
individually and that enzymes leave the acinar cell by a nonexocytotic mecha-
nism (Rothman, 1975, 1980). _

Although it has not been possible in isolated acinar cells to directly measure
fluid production, a direct effect of CCK on this function is indicated by the
actions of either CCK or its analogs to increase both radiosodium uptake (Putney
et al., 1980)-and the turnover of the transport enzyme Na+-K +-ATPase (S. R.
Hootman and J. A. Williams, unpublished data).

In addition to its effects on secretion, the synthetic and metabolic effects of
CCK have also been studied in vitro. Recently, studies with isolated pancreatic
acini have shown a direct effect of low concentrations of CCK on stimulation of
acinar protein synthesis whereas higher concentrations of hormone bring about
inhibition (Fig. 3) (Korc e al., 1981a). CCK stimulates the oxidation of glucose,
alanine, and leucine by fragments of mouse pancreas (Danielsson and Sehlin,
1974). Oxygen consumption is increased (Dickman and Morrill, 1957), presum-
ably reflecting increased energy turnover as both secretion and synthesis require
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Fic. 3. Effect of CCKjg and insulin on [3H]leucine incorporation in isolated pancreatic acini from
diabetic rats. Insulin was added at 0.17 pM. Each value is the mean + SE from four experiments.
(From Korc ef al., 1981a.) -

ATP. CCK also stimulates glucose transport by isolated pancreatic acini as
determined by using both 2-deoxyglucose (Fig. 4) and 3-O-methylglucose. In
contrast, CCK inhibits the uptake of the nonmetabolized amino acid a-ami-
noisobutyric acid (AIB); this inhibition is thought to be due to a reduction in the
electrochemical gradient for Na* (Iwamoto and Williams, 1980). Of interest is
the difference in shape of the various dose—response curves for CCK acting on
isolated pancreatic acini. The curves for enzyme secretion and protein synthesis
are biphasic, whereas those for stimulation of glucose transport and the inhibition
of AIB uptake are monophasic and require higher concentrations of CCK.
Since CCK binds initially to receptors localized on the basolateral plasma
membrane and then rapidly initiates zymogen release at the luminal membrane, it
has long been apparent that that action of CCK must be mediated by a second
messenger. Although early work focused on a possible role for cyclic AMP, it is
now clear that this nucleotide is not involved. Under physiological conditions,
CCK does not increase pancreatic cyclic AMP content and neither exogenous
derivatives of cyclic AMP nor phosphodiesterase inhibitors mimic the action of
CCK (Case, 1978). CCK does bring about an increase in cyclic GMP, but the
rise in cyclic GMP appears secondary to a rise in intracellular Ca2* (Christophe
et al., 1976b). In contrast to the results with cyclic AMP and cyclic GMP,
considerable evidence exists for the role of cytoplasmic Ca2* as the intracellular
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Fi. 4. Effect of CCK on uptake of [?H]2-deoxyglucose (2-DG) by isolated mouse pancreatic
acini. Each value is the mean * SE from four experiments. (From Sankaran et al., 1982.)

mediator of CCK (Case, 1978; Schulz, 1980; Williams, 1980). The major points
are that (1) CCK increases the movement of Ca?* into and out of acinar cells,
(2) removal of extracellular Ca2+ either reduces or abolishes the action of CCK,
and (3) the action of CCK can be mimicked by artificial introduction of Ca2+
into acinar cells by means of calcium ionophores, particularly A23187. A recent
report using Ca?* -sensitive microelectrodes has determined that the concentra-
tion of ionized Ca2* in unstimulated pancreatic cells is 3 X 10~7 M and that
Ca2* increases upon stimulation with acetylcholine (O’Doherty and Stark,
1982). Since CCK is known to act similarly to acetylcholine (although via
distinct receptors), it seems likely that CCK will have a similar effect. Some
controversy exists over the source of Ca2* as both entry from the extracellular -
fluid and release from intracellular stores has been proposed (Schulz, 1980;
Williams, 1980). It seems clear, however, that release from intracellular stores is
the predominant event since enzyme secretion can take place for several minutes
in the complete absence of extracellular Ca?*, even in the presence of extra-
cellular chelators such as EGTA (Scheele and Haymovits, 1980; Williams,
1980). It is not completely clear which organelle(s) releases Ca?* in response to
stimulation with CCK; fttochondria, plasma membrane, and endoplasmic re-
ticulum have been proposed (Chandler and Williams, 1978; Dormer and
Williams, 1981; Schulz et al., 1980). The nature of the signal from CCK recep-
tors located on the plasma membrane to the intracellular Ca?* stores is also a
matter for further investigation.

Little is known about the mechanism by which the rise in cytoplasmic Ca2?+
brings about the increase in amylase release. This process is energy dependent
since inhibitors which lower cellular ATP levels block the action of Ca2+ on
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secretion (Williams and Lee, 1974). Calmodulin, a calcium receptor protein, is
present in pancreas and may be involved in secretion (Vandermeers et al., 1977).
In other cell types calmodulin, after binding Ca2+, activates a number of Ca2* -
activated protein kinases. In support of such an effect in acini, it has recently
been shown that CCK, as well as both the cholinergic analogs and Ca2+
ionophore A23187, alter the phosphorylation of at least five proteins (Burnham
and Williams, 1982). In this study the secretagogues increased the phosphoryla-
tion of a M, = 32,000 particulate protein and M, = 16,000 and 23,000 soluble
proteins. The agents also caused the dephosphorylation of M, = 21,000 and
20,500 soluble proteins (Fig. 5). The time course of phosphorylation, its

Particulate

Soluble
A BC D A B C D

£
%4 g 94
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i e
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<
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FiG. 5. Autoradiographs of soluble and particulate fractions from mouse acini prelabeled with
32P for 1 hour and then incubated for 5 minutes with no additions (A), 3 wM carbachol (B), 3 pM
ionophore A23187 (C), or 300 pM CCKjg (D). (From Burnham and Williams, 1982.)



