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Preface

Chiral organic molecules are currently of widespread interest to organic chemists
and pharmaceutical chemists. In addition to synthetic chiral molecules, naturally
occurring molecules, which are invariably chiral and generally enantiomerically
enriched, are of potential interest as leads for new drugs. The increasing impor-
tance of chiral molecules has stimulated the development of improved research
techniques, especially chromatography, and of new asymmetric synthesis
methods as well as spectroscopic methods for their structural characterization.

Circular dichroism (CD) is the differential absorption of left- and right-circularly
polarized light. The vibrational circular dichroism (VCD) spectrum of a molecule,
first observed in the mid 1970s, is the CD resulting from vibrational excitations of
the molecule. The VCD spectra of the two enantiomers of a chiral molecule are of
equal magnitude and opposite sign: mirror-image enantiomers give mirror-image
VCD spectra. In principle, the absolute configuration (AC) of a chiral molecule can
therefore be determined from its VCD spectrum. In practice, the determination of
the AC of a chiral molecule from its experimental VCD spectrum requires a method-
ology that reliably predicts the VCD spectra of its enantiomers. The development of
a rigorous quantum-mechanical theory of VCD and its implementation in quantum
chemistry programs provides a reliable systematic technique for determining ACs
from experimental VCD spectra.

Given the availability of commercial VCD instrumentation and quantum
chemistry software, it became possible in the late 1990s for chemists to utilize VCD
in elucidating the stereochemistries of chiral organic molecules. The purpose of
this book is to increase the awareness of organic chemists of the utility of VCD
spectroscopy and to provide them with sufficient knowledge to incorporate the
technique into their own research.

PJS is profoundly grateful to all of his former graduate students and postdoctoral
research associates. He especially thanks his former postdoctoral research associates
Dr. Jack Cheng, Professor Larry Nafie (Syracuse University) and Professor Tim
Keiderling (University of Illinois at Chicago) and his mentor, Professor A. David
Buckingham (Cambridge University). FJD thanks his mentor Professor Hector
E. Rubalcava (University College, Dublin) for teaching him the fundamentals of
molecular spectroscopy. JRC thanks Dr. Michael Frisch and Dr. Gary Trucks at
Gaussian, Inc. for their tremendous support over the years. We all thank the won-
derful collaborators who have been involved in our research projects.

We would also like to thank our very supportive editor, Lance Wobus, the project
coordinator, David Fausel, project editor, Marsha Hecht, as well as the production
staff at Taylor & Francis.
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Introduction to Vibrational
Circular Dichroism

Molecules are not totally rigid. Even at absolute zero (0 K), the lengths of bonds
between atoms oscillate, the angles between adjacent bonds oscillate, and the
dihedral angles between bonds separated by a bond oscillate. These motions are
termed molecular vibrations. According to quantum mechanics, the energies of the
vibrational states of molecules are quantized, the lowest energy state being termed
the ground vibrational state.

When a molecule is exposed to electromagnetic radiation (light), the interaction
between the radiation and the molecule can cause light photons to be absorbed by
the molecule, and the molecule to be excited from the ground vibrational state, g, to
higher energy vibrational states, e. The excitation g — e, of energy AE=E_ - E,, is
caused by photons of energy hv = AE, where hv = he/A = hev (v, A, ¢, and V are the
light frequency, wavelength, velocity, and reciprocal wavelength, respectively, and h
is Planck’s constant).

The absorption of light, resulting from vibrational excitations of a molecule, as a
function of the light frequency, is termed the vibrational absorption spectrum of the
molecule. The vibrational absorption spectrum of a molecule is measured using an
infrared (IR) absorption spectrometer, in which IR light is passed through a sample
containing the molecule. The sample can be a pure solid, liquid, or gas, or a solid,
liquid, or gaseous solution of the molecule in a solvent. When the molecules in the
sample are selectively oriented, as in a crystalline solid sample, the absorption spec-
trum is dependent on the linear polarization of the light. When the molecules are
randomly oriented, as is the case in pure liquid and gaseous samples, and in liquid
and gaseous solutions, the absorption spectrum is linear polarization independent.
Most commonly, vibrational absorption spectra are measured using unpolarized IR
light and samples in which the molecules are randomly oriented. An example of a
molecular vibrational absorption spectrum is shown in Figure 1.1. The molecule is
camphor; the spectrum was measured using unpolarized IR light, in a cell of path-
length 236 microns (1), and over the IR frequency range, of reciprocal wavelengths
(wavenumbers) 1,530—-825 cm~!. Absorption is observed at many frequencies, dem-
onstrating the existence of many vibrationally excited states.

All molecules belong to one of two classes: achiral and chiral. By definition, an
achiral molecule is identical to its mirror image: i.e., if the molecule is reflected
in a mirror and then rotated, it can be superimposed on the original, unreflected
molecule. A chiral molecule is different: the molecule and its mirror image are not
superimposable, and therefore constitute different molecules. The two forms of
the molecule are termed enantiomers. Since human left and right hands are mirror
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FIGURE 1.1 The mid-IR vibrational absorption spectrum of a 0.38 M CCl, solution of
1R,4R camphor. A is the absorbance (defined in Chapter 2).

images, and not superimposable, the two mirror image forms of a chiral molecule
are sometimes also referred to as left-handed and right-handed.
A simple example of a chiral molecule is CHFCIBr. The two enantiomers are:

H H

N/ Br Br Wy

cl cl

Any molecule of the formula CR,R,R R, (R}, R,, R;, and R, all being different) is
also chiral. Of great biological significance is the chirality of amino acids, in which
R, = H, R, = NH,, R; = COOH, and R, depends on the specific amino acid (e.g., in
alanine, R, = CH;). A C atom bonded to four different groups is termed a stereogenic
C atom. Many chiral organic molecules contain multiple stereogenic C atoms. For
example, in the steroid natural product cholesterol, C atoms 1, 2, 3, 4, 5, 6, 7, and 8
are stereogenic:
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H3C

cholesterol

HO

In 1956, Cahn, Ingold and Prelog introduced a notation that specifies the chi-
ralities of stereogenic C atoms: a C atom is either R or § [1]. The overall three-
dimensional (3D) structure of an enantiomer of a chiral molecule can then be defined
by listing which atoms are R or S. For example, naturally occurring cholesterol is
15,2R,35,4S,55,6R, 7R 8R [2]. This label is termed the absolute configuration (AC).

Although the 3D geometries of the two enantiomers of a chiral molecule are not
identical, they do possess considerable similarity. In particular, all bond lengths,
bond angles, and nonbonded interatomic distances are unchanged on reflection in
a mirror. As a result, the vibrational excitation energies of the two enantiomers and
the vibrational absorption spectra, measured using samples of randomly oriented
molecules and unpolarized IR light, are identical.

The electric and magnetic fields of a linearly polarized light wave each oscillate
sinusoidally in a plane containing the propagation direction, the electric field and
magnetic field planes being perpendicular to each other. Passage of a linearly polar-
ized light wave through an optical device called a quarter-wave plate [3] converts
the light wave into a circularly polarized (CP) light wave. Two forms of CP light can
be generated, termed right circularly polarized (RCP) and left circularly polarized
(LCP). In both RCP and LCP light, the electric and magnetic fields rotate helically
about the propagation direction of the wave. In RCP light the helix is right-handed
and in LCP light the helix is left-handed. Thus, RCP and LCP light waves of the
same frequency are mirror images.

The vibrational absorption spectrum of a molecule can also be measured using
CP light. If the molecule is achiral and randomly oriented, the spectra obtained using
RCP and LCP light are identical. However, if the molecule is chiral, this is not the
case. The difference in absorption of RCP and LCP light is termed circular dichro-
ism (CD). Conventionally, CD is defined as the absorbance (defined in Chapter 2) of
LCP light (A,) minus the absorbance of RCP light (Ag): CD = AA= A — A;. CD
is therefore positive if A; > Ay and negative if A; < A. For the two enantiomers
of the chiral molecule, the CD at every light frequency is of equal magnitude, but
is opposite in sign; their CD spectra are thus mirror images. The vibrational circu-
lar dichroism (VCD) spectrum of a molecule is the CD resulting from vibrational
excitations of the molecule. Examples of the VCD spectra of the enantiomers of a
chiral molecule are shown in Figure 1.2. The chiral molecule is camphor. The two
enantiomers are:
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(1R, 4R) (1S, 45)

The VCD spectra of the two enantiomers were measured using 0.38 M solutions
of camphor in the achiral solvent CCl, and a cell of pathlength 236 . The mirror
image property of the VCD spectra of the two enantiomers is qualitatively obvi-
ous. Quantitatively, it is proven by addition of the two VCD spectra; as shown
in Figure 1.2, the sum of the two VCD spectra is very close to zero at all frequencies.

The phenomenon of circular dichroism was first discovered by the French scien-
tist Aimé Cotton in 1896 [4] and subsequently became known as the Cotton effect.
The CD measured by Cotton was in the near-ultraviolet (UV) spectral region and
originated in electronic excitations of molecules. As with the vibrational states of
molecules, the electronic states of molecules are quantized. Light photons of the
same energy as the energy of excitation from the lowest energy (ground) electronic
state to a higher energy (excited) electronic state are absorbed by the molecule.

A A x10*

Ld‘\ l ‘ “AA L‘ K ‘ =
R e
L -1
1R, 4R ——
18548 memmiase
1/2 ¥—
15100 14'00 1 3I()O 1 2100 1 IIOO 10'00 9(I)O 800

Wavenumbers (cm™)

FIGURE 1.2 (SEE COLOR INSERT.) The mid-IR VCD spectra of 0.38 M CCl, solutions of
1R.4R and 15,45 camphor, using a cell of pathlength 236 . X is the sum of the spectra. The
measurement of the spectra is discussed in Chapter 2.
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Electronic absorption and CD typically occur in the visible-ultraviolet (VIS-UV)
spectral region (200-1,000 nm, 10,000-50,000 cm™), where light frequencies are
much higher than in the IR spectral region.

Electronic CD (ECD) spectra of chiral molecules were not widely studied until
after the Second World War, when new instrumentation for VIS-UV CD measure-
ment was developed, using modulation techniques and electro-optic modulators
named Pockels cells, permitting ECD spectra to be more efficiently measured [5].
This led rapidly to a much higher level of interest in the application of ECD spec-
tra to the elucidation of the stereochemistries of organic molecules. An important
development, which facilitated such applications, occurred in 1961 when Moffitt,
Woodward, Moscowitz, Klyne, and Djerassi proposed the octant rule, which predicts
the sign of the ECD of the lowest energy electronic excitation of a carbonyl (C=0)
group in a chiral molecule [6]. The octant rule enabled the ACs of chiral molecules
containing carbonyl groups to be determined. In addition, it led to the development
of similar rules for the electronic excitations of other functional groups, which fur-
ther widened the application of ECD spectra to the determination of ACs [7,8].

The reason for the interest in the determination of the ACs of chiral molecules
using ECD spectroscopy was that it provided a less laborious procedure than other
available methods. Two approaches were predominant in determining ACs prior to
the introduction of the ECD approach: (1) x-ray crystallography and (2) chemical
synthesis. X-ray crystallography was used in two ways. One procedure was devel-
oped by Bijvoet et al. [9] and used the anomalous x-ray scattering dispersion of a
high atomic number atom (a *heavy atom”) in the molecule. For example, the AC of
camphor was determined by replacing one of its H atoms by a Br atom and determin-
ing the AC of the resulting 3-Br-camphor [10]. Since the bromination of camphor
does not change its AC, the AC of the 3-Br-camphor is identical to that of camphor.
A second x-ray crystallography procedure used a derivatization reaction of the chiral
molecule with a second chiral molecule, of known AC. Determination of the relative
stereochemistry of the product molecule via x-ray crystallography then determines
the AC of the underivatized chiral molecule. Since x-ray crystallography is widely
used, and the most definitive method for determining the geometry of a molecule,
these two procedures are highly reliable ways to determine the ACs of chiral mol-
ecules. However, there are disadvantages: (1) in the first procedure, if the molecule
does not possess a heavy atom, a chemical reaction must be carried out; (2) in the
second procedure, a chemical reaction must always be carried out; and (3) in both
procedures, single crystals of sufficient size to permit x-ray crystallography must
be obtainable. Since, sometimes, neither the reactions chosen nor the crystalliza-
tion of the products are practical, x-ray crystallography is not always easily used in
determining ACs. The principal alternative approach to x-ray crystallography was
to synthesize the chiral molecule of interest from a precursor chiral molecule of
known AC, using reactions whose mechanisms are understood and whose impacts
on the molecular stereochemistry are predictable. This procedure is useful if such a
synthetic procedure is practical, which is often, but not always, the case.

An additional application of ECD spectroscopy was also of interest to organic
chemists after the development of ECD instrumentation: the conformational anal-
ysis of conformationally flexible chiral molecules. In the 1950s, it became clear,
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especially due to the work of Barton [11], that some organic molecules can have more
than one structure: the multiple structures are termed conformations, and such mol-
ecules are termed conformationally flexible. An early example of a conformationally
flexible molecule was cyclohexane, whose C6 ring can have two structures, termed
chair and twist-boat conformations, discussed in Chapter 5:

Twist-boat

Chair

When the energy barriers between the conformations of a conformationally flex-
ible molecule are not very high, the conformations can interconvert rapidly at room
temperature, and therefore exist in equilibrium. The percentage populations of the
conformations are determined by their relative free energies and the temperature,
according to Boltzmann statistics [12]. Since the ECD of a molecule is sensitive to its
geometry, different conformations of a given enantiomer of a chiral molecule exhibit
different ECD spectra. Consequently, ECD spectroscopy provides a technique for
elucidating the conformations populated in a chiral molecule [13].

In addition to CD, chiral molecules exhibit other properties, which are different for
the two enantiomers. The earliest such property to be discovered was optical rotation
(OR) [14]. When linearly polarized light is passed through a sample containing ran-
domly oriented chiral molecules, the plane of the polarization is rotated by an angle
o. The OR o is equal in magnitude, but opposite in sign, for the two enantiomers.
Historically, OR was most often measured using light emitted by a sodium lamp at a
wavelength referred to as the sodium D line (589 nm), and converted to the specific
rotation, [0, defined by [a], = o/fc, where { is the cell pathlength in dm and c is the
concentration of the chiral molecule in the sample in g/100 ml. The two enantiomers
with positive and negative [0], values were then termed (+) and (-), respectively. The
AC of a chiral molecule is determined for either the (+) or the () enantiomer. In
reporting the conclusion, both the AC and OR sign are listed. Thus, for example, the
AC of (+)-camphor is (1R,4R)-(+) and the AC of (-)-camphor is (15,45)-(-).

Following the development of efficient instrumentation for the measurement of
VIS-UV ECD spectra and the widespread application of ECD spectra to the elucida-
tion of the ACs and/or conformational structures of chiral organic molecules, the
obvious questions arose: Can CD due to vibrational excitations, vibrational circular
dichroism (VCD), be measured in the IR spectral region, and if so, can VCD also be
used to determine the ACs and/or conformational structures of chiral organic mol-
ecules? As aresult, in the early 1970s, instruments capable of measuring CD in the IR
spectral region were designed and built in two laboratories: the Stephens laboratory
at the University of Southern California (USC) [15] and the Holzwarth laboratory at
the University of Chicago (UC) [16]. In the 1970s experimental VCD spectra of chiral
organic and organometallic molecules were measured and published: one molecule,
2,2,2-trifluoro-1-phenylethanol, at UC [17] and the 23 molecules listed in Table 1.1
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TABLE 1.1
Chiral Molecules Whose VCD was Measured at USC in the 1970s

1. 2,2, 2-Trifluoro- 1-phenylethanol
. a-Methylbenzylamine
N,N-o-Trimethylbenzylamine

. 3-Methyl-cyclopentanone

. 3-Methyl-cyclohexanone
Menthol

. o-Pinene

=i EE=AN A T L

. B-Pinene

O

. Camphor
. 3-Br-camphor

o

. Borneol

(3]

. Tris (3-trifluoromethylhydroxymethylene-d-camphorato) praseodymium

o8]

. Tris (3-trifluoromethylhydroxymethylene-d-camphorato) europium
. Poly-1-methyl-propyl-vinyl-ether

. Poly-4-methyl-1-hexene

16. Dimethyl tartrate

17. Alanine

18. Camphoric anhydride

19. 1,6-Spiro [4.4] nonadiene

20. Exo-3-deutero-isoborneol

RS

. Exo-3-deutero-camphor

[SS TN IS
[§5]

. o-Deutero-propylbenzene
. Fe(CsHs) (P(C¢Hs)3) (CO) (Ev)

[SS]
)

at USC [18]. This work proved that VCD spectra could indeed become a practical
technique for determining the stereochemistries of chiral organic molecules. In order
to realize this promise, two developments remained to be accomplished. First, the
frequency range of the existing VCD instrumentation, which was limited to frequen-
cies of >1,600 cm™, had to be extended, to permit a wider fraction of the IR spectral
region to be accessed, and the sensitivity (i.e., the signal-to-noise ratio) of the existing
VCD instrumentation had to be increased, to permit VCD to be measured reliably
for a larger number of molecules. Second, a methodology by which molecular ste-
reochemistries could be reliably deduced from experimental VCD spectra had to be
developed; otherwise, the spectra would be of no practical value. By the mid-1980s
the frequency range of the USC VCD instrument had been greatly expanded by
Devlin and Stephens [19], the lower frequency limit having been extended to ~650
cm!, and the sensitivity substantially increased. At the same time, a rigorous quan-
tum mechanical theory of VCD had been developed by Stephens [20], which was
implemented for a number of chiral molecules using the ab initio Hartree-Fock (HF)
molecular orbital theory [21]. Comparison of ab initio HF calculations of VCD spec-
tra using the Stephens theory to experimental VCD spectra led to great optimism that
VCD spectroscopy could soon become a widely used technique. Two further devel-
opments added to this optimism. First, the explosion in the late 1980s of ab initio
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density functional theory (DFT) and the documentation of its much greater accuracy
than HF theory in predicting molecular properties made it desirable to implement the
Stephens theory of VCD using DFT. This was carried out in the 1990s by Cheeseman
and Frisch at GAUSSIAN, Inc. [22], using the GAUSSIAN program, which was orig-
inally developed in John Pople's laboratory and subsequently has become a widely
distributed program, frequently used by both quantum chemists and organic chem-
ists for predicting molecular properties. Comparison of the VCD spectra of chiral
organic molecules, calculated using DFT in the Gaussian programs G92, G98, G03,
and G09 [23], to experimental VCD spectra proved the superior accuracy of DFT
VCD spectra [24]. Second, the extension of the methodology used by Stephens and
Holzwarth for measuring VCD using dispersive IR spectrometers to Fourier trans-
form IR (FTIR) spectrometers demonstrated that VCD spectra could also be obtained
using FT instrumentation [25]. Following the DFT implementation of the Stephens
theory of VCD, several companies manufacturing and marketing FTIR spectrom-
eters realized that a market for commercial FT VCD instrumentation could exist, and
began the manufacturing and marketing of VCD instruments. As a result, potential
users of VCD spectroscopy no longer had to build their own instrumentation.

Given the availability of commercial software, permitting the prediction of VCD
spectra using DFT, and of commercial VCD instrumentation, it became possible in
the late 1990s for chemists to utilize VCD in elucidating the stereochemistries of
chiral organic molecules. As a result, the number of publications per year report-
ing VCD studies of chiral organic molecules substantially increased. Despite this
boom, many organic chemists remain unfamiliar with VCD spectroscopy. The pur-
pose of this book is to increase the awareness of organic chemists of the utility of
VCD spectroscopy. To achieve this purpose, we discuss in detail the experimental
measurement of VCD spectra and their analysis using the Stephens theory of VCD,
implemented using ab initio DFT. In Chapter 2, we discuss the experimental mea-
surement of vibrational absorption and VCD spectra. In Chapter 3, we discuss the
fundamental quantum mechanical theory of the vibrational states of molecules and
of their vibrational absorption and VCD spectra. In Chapter 4, we discuss the appli-
cation of the ab initio HF and DFT methods of quantum chemistry to the prediction
of the molecular structures and vibrational states of organic molecules. In Chapter 5,
we discuss the conformational analysis of conformationally flexible molecules. In
Chapter 6, we discuss the analysis of the vibrational absorption and VCD spectra of
a number of conformationally rigid chiral organic molecules, in order to define the
optimum basis sets and DFT functionals for calculations of vibrational absorption
and VCD spectra, and to define the methodology by which ACs are deduced from
VCD spectra. Finally, in Chapter 7, we present studies of a set of chiral organic mol-
ecules that further document the power of VCD spectroscopy and make clear how
wide is the applicability of this technique.
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