Boris Konev
Frank Wolter (Eds.)

Frontiers of
Combining Systems

6th International Symposium, FroCoS 2007
Liverpool, UK, September 2007
Proceedings

LNAI 4720

@ Springer

Boris Konev Frank Wolter (Eds.)

Frontiers of
Combining Systems

6th International Symposium, FroCoS 2007
Liverpool, UK, September 10-12, 2007
Proceedings

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Boris Konev

Frank Wolter

University of Liverpool

Department of Computer Science

Ashton Building, Liverpool L69 3BX, UK
E-mail: { B.Konev; F.Wolter} @csc.liv.ac.uk

Library of Congress Control Number: 2007933812

CR Subject Classification (1998): 1.2.3, F4.1, F4
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-74620-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74620-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115235 06/3180 543210

Lecture Notes in Artificial Intelligence 4720
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 4720: B. Konev, F. Wolter (Eds.), Frontiers of Com-
bining Systems. X, 283 pages. 2007.

Vol. 4682: D.-S. Huang, L. Heutte, M. Loog (Eds.),
Advanced Intelligent Computing Theories and Applica-
tions. XX VII, 1373 pages. 2007.

Vol. 4660: S. DZeroski, J. Todorovski (Eds.), Computa-
tional Discovery of Scientific Knowledge. X, 327 pages.
2007.

Vol. 4651: F. Azevedo, P. Barahona, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 185 pages.
2007.

Vol. 4635: B. Kokinov, D.C. Richardson, T.R. Roth-
Berghofer, L. Vieu (Eds.), Modeling and Using Context.
X1V, 574 pages. 2007.

Vol. 4632: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaiane
(Eds.), Advanced Data Mining and Applications. XV,
634 pages. 2007.

Vol. 4626: R.0. Weber, M.M. Richter (Eds.), Case-Based
Reasoning Research and Development. XIII, 534 pages.
2007.

Vol. 4617: V. Torra, Y. Narukawa, Y. Yoshida (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 502
pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-
formulation, and Approximation. XI, 418 pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-
ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007.

Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007.

Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),
Artificial Intelligence in Medicine. XVI, 509 pages.
2007.

Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Applica-
tions of Fuzzy Sets Theory. XVIII, 693 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007.

Vol. 4571: P. Perner (Ed.), Machine Learning and Data
Mining in Pattern Recognition. XIV, 913 pages. 2007.

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.

Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007.

Vol. 4539: N.H. Bshouty, C. Gentile (Eds.), Learning
Theory. XII, 634 pages. 2007.

Vol. 4529: P. Melin, O. Castillo, L.T. Aguilar, J.
Kacprzyk, W. Pedrycz (Eds.), Foundations of Fuzzy
Logic and Soft Computing. XIX, 830 pages. 2007.

Vol. 4520: M..V. Butz, O. Sigaud, G. Pezzulo, G. Baldas-
sarre (Eds.), Anticipatory Behavior in Adaptive Learning
Systems. X, 379 pages. 2007.

Vol. 4511: C. Conati, K. McCoy, G. Paliouras (Eds.),
User Modeling 2007. XVI, 487 pages. 2007.

Vol. 4509: Z. Kobti, D. Wu (Eds.), Advances in Artificial
Intelligence. XII, 552 pages. 2007.

Vol. 4496: N.T. Nguyen, A. Grzech, R.J. Howlett, L.C.
Jain (Eds.), Agent and Multi-Agent Systems: Technolo-
gies and Applications. XXI, 1046 pages. 2007.

Vol. 4483: C. Baral, G. Brewka, J. Schlipf (Eds.), Logic
Programming and Nonmonotonic Reasoning. IX, 327
pages. 2007.

Vol. 4482: A. An, J. Stefanowski, S. Ramanna, C.J. Butz,
W. Pedrycz, G. Wang (Eds.), Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing. XIV, 585 pages.
2007.

Vol. 4481: J. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N.J.
Cercone, D. Slezak (Eds.), Rough Sets and Knowledge
Technology. XIV, 576 pages. 2007.

Vol. 4476: V. Gorodetsky, C. Zhang, V.A. Skormin, L.
Cao (Eds.), Autonomous Intelligent Systems: Multi-
Agents and Data Mining. XIII, 323 pages. 2007.

Vol. 4456: Y. Wang, Y.-m. Cheung, H. Liu (Eds.), Com-
putational Intelligence and Security. XXIII, 1118 pages.
2007.

Vol. 4455: S. Muggleton, R. Otero, A. Tamaddoni-
Nezhad (Eds.), Inductive Logic Programming. XII, 456
pages. 2007.

Vol. 4452: M. Fasli, O. Shehory (Eds.), Agent-Mediated
Electronic Commerce. VIII, 249 pages. 2007.

Vol. 4451: T.S. Huang, A. Nijholt, M. Pantic, A. Pent-
land (Eds.), Artifical Intelligence for Human Computing.
XVI, 359 pages. 2007.

Vol. 4441: C. Miiller (Ed.), Speaker Classification. X,
309 pages. 2007.

Vol. 4438: L. Maicher, A. Sigel, L.M. Garshol (Eds.),

Leveraging the Semantics of Topic Maps. X, 257 pages.
2007.

Vol. 4434: G. Lakemeyer, E. Sklar, D.G. Sorrenti, T.
Takahashi (Eds.), RoboCup 2006: Robot Soccer World
Cup X. XIII, 566 pages. 2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007.

Vol. 4428: S. Edelkamp, A. Lomuscio (Eds.), Model
Checking and Artificial Intelligence. IX, 185 pages.
2007.

Vol. 4426: Z.-H. Zhou, H. Li, Q. Yang (Eds.), Advances
in Knowledge Discovery and Data Mining. XXV, 1161
pages. 2007.

Vol. 4411:.R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Sys-
tems. XIV, 249 pages. 2007.

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007.

Vol. 4399: T. Kovacs, X. Llora, K. Takadama, P.L. Lanzi,
W. Stolzmann, S.W. Wilson (Eds.), Learning Classifier
Systems. XII, 345 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), Formal
Concept Analysis. X, 329 pages. 2007.

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems III. X, 273
pages. 2007.

Vol. 4386: P. Noriega, J. Vizquez-Salceda, G. Boella,
O. Boissier, V. Dignum, N. Fornara, E. Matson (Eds.),
Coordination, Organizations, Institutions, and Norms in
Agent Systems II. XI, 373 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006.

Vol. 4343: C. Miiller (Ed.), Speaker Classification. X,
355 pages. 2007.

Vol. 4342: H. de Swart, E. Orfowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007.

Vol. 4334: B. Beckert, R. Hihnle, P.H. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2007.

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006.

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007.

Vol. 4304: A. Sattar, B.-h. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006.

Vol. 4303: A. Hoffmann, B.-h. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006.

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik, A.
Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou, G.
Stumme, V. Svétek, M. van Someren (Eds.), Semantics,
Web and Mining. X, 197 pages. 2006.

Vol. 4285: Y. Matsumoto, R.W. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006.

Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-
nese Spoken Language Processing. XXIV, 805 pages.
2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006.

Vol. 4264: J.L. Balcdzar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning 7'heory. XIII, 393 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. N3uyen, R. Stowinski (Eds.), Rough
Sets and Current Treads in Computing. XXII, 951 pages.
2006.

Vol. 4253: B. Gaorys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part ITIl. XXXII, 1301 pages. 2006.

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II1. XXXIII, 1335 pages. 2006.

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXVI, 1297 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006.

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006.

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C.L. Nehaniv
(Eds.), Symbol Grounding and Beyond. VIII, 237 pages.
2006.

Vol. 4203: F. Esposito, Z.W. Ra$, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006.

Preface

This volume contains the proceedings of the Sixth International Symposium on
Frontiers of Combining Systems (FroCoS 2007) held September 10-12, 2007 in
Liverpool, UK. Previously, FroCoS was organized in Munich (1996), Amsterdam
(1998), Nancy (2000), Santa Margeritha Ligure near Genoa (2002), and Vienna
(2005). In 2004 and 2006, FroCoS joined IJCAR, the International Joint Con-
ference on Automated Reasoning. Like its predecessors, FroCoS 2007 offered a
forum for the presentation and discussion of research activities on the combi-
nation, integration, analysis, modularization and interaction of formally defined
systems, with an emphasis on logic-based ones. These issues are important in
many areas of computer science, such as logic, computation, program devel-
opment and verification, artificial intelligence, automated reasoning, constraint
solving, declarative programming, and symbolic computation.

There were 31 submissions to FroCoS 2007. Each submission was reviewed
by at least three Programme Committee members. After extensive discussion
within the Programme Committee, 14 papers were accepted for presentation
and publication in this volume. In addition to technical papers, the volume also
includes four invited contributions by Sava Krstic (Intel Corporation, USA),
Roberto Sebastiani (University of Trento, Italy), Viorica Sofronie-Stokkermans
(Max-Planck-Institut fiir Informatik, Germany), and Michael Zakharyaschev
(Birkbeck College London, UK).

Many people and institutions contributed to making FroCoS 2007 a success.
We are indebted to the members of the Programme Committee and the addi-
tional refereees for the thorough reviewing work; the members of the FroCoS
Steering Committee for their support, to Andrei Voronkov for free use of the
EasyChair conference management system, to sponsorship from EPSRC, and to
Dave Shield and Thelma Williams for their invaluable assistance in hosting this
conference.

June 2007 Boris Konev
Frank Wolter

Conference Organization

Conference Chair

Boris Konev

Programme Chair

Frank Wolter

Programme Committee

Alessandro Armando
Franz Baader
Jacques Calmet
Silvio Ghilardi
Bernhard Gramlich
Deepak Kapur

Till Mossakowski
Joachim Niehren
Albert Oliveras

Dirk Pattinson
Silvio Ranise

Mark Reynolds
Christophe Ringeissen
Ulrike Sattler
Amilcar Sernadas
Cesare Tinelli

Luca Vigano

External Reviewers

Pedro Adao

Daniel Bond

Torben Braiiner
Sylvain Conchon
Giovanna D’Agostino
F. Miguel Dionisio
Tim French

Olivier Gauwin
Isabelle Gnaedig
Guillem Godoy

VIII Organization

Florent Jacquemard
Oliver Kutz

Giacomo Lenzi

Denis Lugiez
Christopher Lynch
Jacopo Mantovani
Paulo Mateus

Aart Middeldorp
Sara Negri

Andrei Popescu
Albert Rubio

Peter Schneider-Kamp
Lutz Schroder

Aaron Stump

Guido Tack

Rene Thiemann
Kumar Neeraj Verma
Dirk Walther

Table of Contents

Section 1. Invited Contributions

Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with
DL .t
Sava Krsti¢ and Amit Goel

From KSAT to Delayed Theory Combination: Exploiting DPLL
Outside the SAT Domaino.iiiiiiii i
Roberto Sebastiani

Hierarchical and Modular Reasoning in Complex Theories: The Case of
Local Theory EXtensions.c.uuuiiiniiieiiieinnenneenann,
Viorica Sofronie-Stokkermans

Temporalising Logics: Fifteen Years After
Michael Zakharyaschev

Section 2. Technical Papers

Termination of Innermost Context-Sensitive Rewriting Using
Dependency Pairs
Beatriz Alarcon and Salvador Lucas

A Compressing Translation from Propositional Resolution to Natural
Deduction.o
Hasan Amjad

Combining Algorithms for Deciding Knowledge in Security Protocols . . .
Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune

Combining Classical and Intuitionistic Implications...................
Carlos Caleiro and Jaime Ramos

Towards an Automatic Analysis of Web Service Security
Yannick Chevalier, Denis Lugiez, and Michaél Rusinowitch

Certification of Automated Termination Proofs
Evelyne Contejean, Pierre Courtieu, Julien Forest,
Olivier Pons, and Xavier Urbain

Temporal Logic with Capacity Constraints
Clare Dizon, Michael Fisher, and Boris Konev

28

47

72

73

88

103

X Table of Contents

Idempotent Transductions for Modal Logics 178
Tim French
A Temporal Logic of Robustnesso, 193

Tim French, John C. M°Cabe-Dansted, and Mark Reynolds

Noetherianity and Combination Problems 206
Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli

Languages Modulo Normalization 221
Hitoshi Ohsaki and Hiroyuki Seks

Combining Proof-Producing Decision Procedures..................... 237
Silvio Ranise, Christophe Ringeissen, and Duc-Khanh Tran

Visibly Pushdown Languages and Term Rewriting 252
Jacques Chabin and Pierre Réty

Proving Termination Using Recursive Path Orders and SAT Solving.... 267
Peter Schneider-Kamp, René Thiemann, Elena Annowv,
Michael Codish, and Jirgen Giesl

Author Index 283

Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL

Sava Krsti¢ and Amit Goel

Strategic CAD Labs, Intel Corporation

Abstract. We offer a transition system representing a high-level but
detailed architecture for SMT solvers that combine a propositional SAT
engine with solvers for multiple disjoint theories. The system captures
succintly and accurately all the major aspects of the solver’s global op-
eration: boolean search with across-the-board backjumping, communica-
tion of theory-specific facts and equalities between shared variables, and
cooperative conflict analysis. Provably correct and prudently underspec-
ified, our system is a usable ground for high-quality implementations of
comprehensive SMT solvers.

1 Introduction

SMT solvers are fully automated theorem provers based on decision procedures.
The acronym is for Satisfiability Modulo Theories, indicating that an SMT solver
works as a satisfiability checker, with its decision procedures targeting queries
from one or more logical theories. These proof engines have become vital in veri-
fication practice and hold an even greater promise, but they are still a challenge
to design and implement. From the seminal Simplify [9] to the current state-of-
the-art Yices [10], with notable exceptions such as UCLID (6], the prevailing wis-
dom has been that an SMT solver should contain a SAT solver for managing the
boolean complexity of the input formula and several specialized solvers—linear
arithmetic and “theory of uninterpreted functions” obbligato—that communi-
cate by exchanging equalities between variables (“the Nelson-Oppen style” [15]).
This much granted, there is a host of remaining design issues at various levels
of abstraction, the response to which distinguishes one solver from another.
Our goal is to define the top-level architecture of an SMT solver as a math-
ematical object that can be grasped as a whole and fruitfully reasoned about.
We want an abstract model that faithfully captures the intricacies of the solver’s
global operation—what is going on between the architectural components and
what is going on inside the components that is essential for interaction. We
achieve this goal by presenting the SMT solver as a non-deterministic transi-
tion system. The ten rules of our system (Figure 5) provide a rather detailed
rational reconstruction of the mainstream SMT solvers, covering the mecha-
nisms for boolean search, communication of theory-specific facts and equalities
between shared variables, and global conflict analysis. The system provides a
solid theoretical basis for implementations, which can explore various execution

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 1-27, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 S. Krsti¢ and A. Goel

strategies, refinements and optimizations, assured of fundamental correctness as
long as they “play by the rules”.

Following the precursor [12] to this paper, we adopt a logic with paramet-
ric polymorphism as the natural choice for SMT solvers, emphasizing cardinality
constraints—not the traditional stable-infinity condition—as an accurate expres-
sion of what matters for completeness of the Nelson-Oppen method in practice.
Our main results are the termination, soundness, and completeness theorems for
our transition system.

Related Work. We were inspired mainly by the work of Nieuwenhuis, Oliveras,
and Tinelli [16] on abstract DPLL and abstract DPLL modulo theories—transition
systems that model a DPLL-style SAT solver [8] and an SMT solver that extends
it with a solver for one theory. In the follow-up paper [3], the same authors with
Barrett extend their system with features for “splitting on demand” and derive
from it the DPLL(T,...,T,) architecture. This architecture is closely related
to our system NODPLL (Section 5), but is significantly less detailed and transpar-
ent. It refines DPLL modulo a single (composite) theory with appropriate purity
requirements on some, but not all rules. In contrast, NODPLL is explicitly modulo
multiple theories, with rules specifying actions of specific theory solvers and the
solvers’ interaction made vivid. For example, equality propagation is spelled out
in NODPLL, but which solver in DPLL(Ty,...,T,) derives x = z from x = y
and y = z is not clear. Another important difference is in the modeling of con-
flict analysis and it shows even if our systems are compared at the propositional
(SAT solver) level. While [16] and [3] view confict analysis abstractly, tucking it
in a general rule for backjumping, NODPLL has rules that directly cover its key
steps: conflict detection, the subsequent sequence of “explanations”, generation
of the “backjump clause”, and the actual backjump. In an SMT solver, in partic-
ular with multiple theories, conflict analysis is even more subtle than in a SAT
solver, and the authors of [16] are the first to point out its pitfalls (“too new
explanations”) and identify a condition for its correct behavior. NODPLL neatly
captures this condition as a guard of a rule.

Our work also builds on [7], which has a transition system modeling a Nelson-
Oppen solver for multiple theories, but does not address the cooperation with
the SAT solver. Formal models of SMT solvers that do handle a SAT solver
together with more than one theory are given only in the paper [3] discussed
above and earlier works [2], [5]. Barrett’s architecture of CVC Lite as described
in [2] is complex and too low-level for convenient analysis and application. The
system SMT (T, UT5) of Bozzano et al. [5] describes in pseudo-code a particular
approach for equality propagation taken by the MathSAT solver, which can be
modeled in NODPLL; see Section 5.6.

Outline. Section 2 contains (termino)logical background as developed in [12],
but divorcing the solver’s polymorphic language from HOL, to emphasize that

! The justification for the presence of non-stably-infinite theories in the Nelson-Oppen
framework is studied in recent papers [20,17,4]; in [12], it is shown that the concept
of stable-infinity can be dismissed altogether.

Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL 3

2 . oy | _Bool—Bool A Bool?—Bool
ZEq = (BOO' | - —»Bool’ Ite[BooI,a,a] a’trueBool7fa|5eBoo - ool ool 3 N\Boo ool .)

Zur = (= | @@= Pel=P)
2 2 2y
Elnt = (lnt | Olnt’ llnt’ (_l)lnt’ e +Int2—>lnt, _Int —~Int, ><Int —»Int’ Slnt Bool’ . >

x = (x| (-, -)lPImexB fepaxBoe gndaxf—h)

EArray = (Array l mk_arrﬁ_'A"aY(o"B), read[Array(a,ﬂ),a]——*ﬁ’ Write[Array(a,E),a,ﬁ}—vArray(a,ﬁ))

Siier = (LiSt l cons[a,List(a)]—wList(a)’ n”List(r:x)Y head[List(a),a]HBool’ tail[List(a),List(a)]—»Boo|>
Fig. 1. Signatures for theories of some familiar datatypes. For space efficiency, the
constants’ arities are shown as superscripts. Xgq contains the type operator Bool and
standard LOGICAL CONSTANTS. All other signatures by definition contain Ygq, but to
avoid clutter we leave their Jgq-part implicit. In X'y, the symbol UF is for uninterpreted
functions and the intended meaning of @ is the function application. The list functions
head and tail are partial, so are represented as predicates in X\ js.

parametricity is not tied to higher-order logic, even though it is most conve-
niently expressed there. In Section 3, we overview purification—a somewhat
involved procedure in the context of parametric theories—and give a suitable
form of the non-deterministic Nelson-Oppen combination theorem of [12]. Sec-
tion 4 is a quick rendition of the core DPLL algorithm as a transition system
covering the essential features of modern SAT solvers. Section 5 contains the
description of our main transition system for modeling combined SMT solvers,
the basic correctness results for it, and some discussion. All proofs are given in
the appendix.

2 Preliminaries

We are interested in logical theories of common datatypes and their combinations
(Figure 1). A datatype has its syntax and semantics; both are needed to define
the theory of the datatype. We give a brief overview of the syntax and an
informal sketch of semantics, referring to [12] for technical details.

Types. A set O of symbols called TYPE OPERATORS, each with an associated
non-negative arity, and an infinite set of TYPE VARIABLES define the set Tp, of
TYPES over O. It is the smallest set that contains type variables and expressions
F(o1,...,0n), where F' € O has arity n and o; € Tpg.

A TYPE INSTANTIATION is a finite map from type variables to types. For
any type o and type instantiation 6 = [o1/a1,...,0n/an], 6(c) denotes the
simultaneous substitution of every occurrence of o; in o with o;. We say that 7
is an INSTANCE of o if there is some 6 such that 7 = 6(o).

Signatures. A SIGNATURE is a pair (O | K), where O is a set of type operators
and K is a set of CONSTANTS typed over O. By this we mean that every element
of K has an ARITY, which is a tuple of types (o0o,...,0n). Here, o1,...,0, are

4 S. Krsti¢ and A. Goel

the argument types of k, and oy is its range type. Constants whose range type
is Bool will be called PREDICATES.

We will use the more intuitive notation k:: [o1,...,0,] — 00 to indicate the
arity of a constant. Moreover, we will write k: [11,...,7,] — 7o if there is a type
instantiation that maps oq,...,0, to 7,..., T, respectively. Note the use of :

and : for the “principal type” and “type instance” of k respectively. Also note
that arities are not types—the symbol — is not a type operator.?

Terms. For a given signature X' = (O | K) and every o € Tpy, we assume there
is an infinite set of variables of type o; we write them in the (name,type)-form
v?. The sets Tm, of X-TERMS OF TYPE o are defined inductively by these rules:

(1) every variable v? is in Tm,
(2) ifty € Tmyy,...,tn € Tm, and k: [11,...,70n] — 70, then kt1 ... t, € Tmy,

Type instantiations act on terms: define 6(t) to be the term obtained by
replacing every variable 7 in t with 2%(°). If ¢ € Tm,, then 6(t) € Tmy(s). We
define t' C ¢ to mean that t' = 6(t) for some 6, and we then say that ¢’ is a TYPE
INSTANCE of ¢t and ¢ is a TYPE ABSTRACTION of ¢'.

For every term ¢, there exists the MOST GENERAL ABSTRACTION t2P% charac-
terized by: (1) ¢t C #2b%; and (2) ¢’ C 3PS for every ¢’ such that ¢ C #'. The term
t2bs is unique up to renaming of type variables and can be obtained by erasing
all type information from ¢ and then applying a type inference algorithm. For
type inference, see, e.g., [13].

Semantics. The type operators List and Array have arities one and two respec-
tively. The meaning of List is a function of arity one (by abuse of notation, also
denoted List) that given a set F as an argument produces the set List(E) of all
lists with elements in E. The meaning of Array is a function that given two sets
I and E as arguments produces the set Array(I, E) of arrays indexed by I with
elements in F.

The meaning of polymorphic types is defined once we know the meaning of
type operators. For example, the meaning of the type Array(a, Array(a,) is a
function that given any two sets I and FE (as interpretations of type variables
a, 3) produces the set Array(I, Array(I, E)). If there are no occurrences of type
variables in a type (e.g., List(Bool X Int)), then the meaning of that type is always
the same set; if the set is finite, we call the type FINITE.

The meaning of a constant is an indexed family of functions. For example,
the meaning of cons is the family {consg | E is a set}, where consg is a function
that takes an argument in E and an argument in List(E) and produces a result
in List(E).

The meanings of type operators and constants of a signature together deter-
mine a STRUCTURE for that signature. The structure gives meaning to all terms.

2 1In [12], the type and term languages asssociated with a signature were defined as
subsets of the higher-order logic, where the function space type operator is primitive
and so arities could be seen as types.

Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL 5

Consider ¢t = read(write(a®™(A) & 26) j*). Once a and § are interpreted
as concrete sets (I and E, say) and interpretations for the variables a,i,z,j
(elements of Array(I, E),I, E,I respectively) are given, the polymorphic term
t becomes a well-defined element of E. In [12], which should be consulted for
more details, this element is denoted [t](:, p), where ¢ and p together define an
environment for t: . maps the type variables «, 3 to sets I, E respectively, and
p maps the variables a, i, z, j to elements of Array(I, E), I, E, I respectively.

As a boring exercise, the reader may furnish the signatures in Figure 1 with
meanings of their type operators and constants, thus obtaining definitions of
structures Zeq, 7UF, Zint, 7x , TArray, Ziist-

Satisfiability. A X-FORMULA is an element of Tmgool. If ¢ is a XY-formula and 7
is a Y-structure, we say that ¢ is SATISFIABLE in 7T if [¢](c, p) = true for some
environment (¢, p); this environment then is called a MODEL of ¢. We also say that
¢ is VALID if —¢ is unsatisfiable. Validity is denoted =7 ¢, and ¢1,...,¢n ET ¢
is an abbreviation for E7 ¢1 A -+ A ¢ D ¢. The THEORY of a structure is the
set of formulas that are valid in it.

An ATOMIC Y-FORMULA is either a propositional variable or a term of the
form kti ... tn, where k is a predicate. A Y-LITERAL is an atomic formula or
its negation. A CLAUSE is a disjunction of literals. A QUERY is a conjunction of
formulas. Clauses containing the same literals in different order are considered
equal. (We think of clauses and queries as sets of literals and formulas respec-
tively.) A CONVEX THEORY is defined by the property that if a set of literals
implies a disjunction of equalities, then one of the disjuncts must be implied.

A CARDINALITY CONSTRAINT is an “equality” of the form a = n, where «
is a type variable and n is a positive integer; an enviroment (t, p) satisfies this
constraint if v is in the domain of ¢ and the cardinality of the set ¢() is n.

Combining Structures. Two signatures are DISJOINT if the only type operators
and constants they share are those of Ygq. If 71,...,7, are structures with
pairwise disjoint signatures, then there is a well-defined sum structure T =
T + - - -+ 7,; the semantics of its type operators and constants is defined by the
structures they come from. The types and terms of each 7; are types and terms
of T too. We will call them PURE, or i-PURE when we need to be specific. The
attribute MIXED will be used for arbitrary terms and types of a sum structure.

Solvers. A SOLVER for a fragment of a theory is a sound and complete satisfia-
bility checker for sets of formulas (QUERIES) in the fragment. A STRONG SOLVER
checks satisfiability of queries that contain formulas and cardinality constraints.

In practice, theory solvers are built for queries consisting of literals only. The
well-known argument that this is sufficient in general begins with the observation
that every query @ is equisatisfiable with one of the form Q = & U {p1 &
®1,---,Pn < dn}, where the p; are propositional variables, the ¢; are literals,
and @y is a propositional query, the boolean skeleton of @. A truth assignment
M to propositional variables that satisfies &g can be extended to a model for &
if and only if the query of literals Qar = {¢}, ..., ¢, } is T-satisfiable, where ¢/, is

6 S. Krsti¢ and A. Goel

either ¢; or —¢;, depending on whether M (p;) is true or false. Thus, satisfiability
of @ is decided by checking if Qs is satisfiable for some model M of ®,. This,
of course, calls for a SAT solver to efficiently enumerate the models M.

Parametricity. There is uniformity in the way “polymorphic” functions like cons
compute their results—a consequence of the fact that the definition of consg
takes the set E as a parameter, making no assumptions about it. Precisely pin-
ning down this uniformity concept is somewhat tricky and we content ourselves
with definitions of parametric type operators and parametric constants that are
most convenient for our purposes. They are needed for proper understanding of
Theorem 1 below, but not for much else in this paper. Thus, the reader may
safely proceed with only a cursory reading of the rest of this section.

Recall first that a relation between two sets A and B is a PARTIAL BIJECTION
if it can be seen as a bijection between a subset of A and a subset of B. Define an
n-ary set function F' to be PARAMETRIC if it is functorial on partial bijections.
This means that given any partial bijections f;: A; < B;, where i = 1,...,n,
there exists a partial bijection F(f1,..., fn): F(41,...,4,) « F(By,...,By);
moreover, there is a requirement that the identity and composition be pre-
served. That is, F(ida,,...,ida,) = idp(a,, . a,) and F(gio fi,...,gn o fn) =

F(gl,...,gn)OF(fl,...,fn), where A'i &Bz & i-

Consider a structure whose type operators are all parametric in the above
sense and let k :: [o1,...,0,] — 0¢ be a constant of this structure. Observe
that if a;,...,a,, are all type variables that occur in the types o;, then any
interpretation ¢ of type variables (that is, an assignment, for each i, of a set A;
to o) interprets each type o; as a set, say S;, and interprets k as a function
k,: Sy x -+ xS, — Sp. Suppose now we have two interpretations ¢, for type
variables, the first just as above, and the second with A} and S in place of A; and
S;. Suppose also that f; : A; < A are partial bijections. Since the type operators
of our structure are assumed parametric, there are induced partial bijections
gj: Sj < 8}, for j = 0,...,n. We say that the constant k is PARAMETRIC if
in this situation we have go(k,(z1,...,2n)) = kv (91(z1),- .., gn(zn)) for every
z1 € dom(f1),...,Zn € dom(fp).

Finally, a PARAMETRIC STRUCTURE is required to have all type operators and
all constants parametric. Our example structures Tgq, 7ur; Zint, T, TArray; ZList,
with the notable exception of 7yf, are all parametric; so are the structures de-
scribing sets, multisets, and arbitrary algebraic datatypes [12].

We should note that the well-known concept of REYNOLDS PARAMETRICITY
in programming languages [18] is neither weaker nor stronger than the concept
we are using. In particular, 7y is Reynolds parametric. See [12].

3 Purification and Non-deterministic Nelson-Oppen

In the untyped setting, to purify a query consisting of mixed formulas is to
transform it into an equisatisfiable query consisting of pure formulas. The trans-
formation iteratively replaces a pure subterm ¢ in a mixed formula with a fresh

