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Preface

This volume contains the proceedings of the Sixth International Symposium on
Frontiers of Combining Systems (FroCoS 2007) held September 10-12, 2007 in
Liverpool, UK. Previously, FroCoS was organized in Munich (1996), Amsterdam
(1998), Nancy (2000), Santa Margeritha Ligure near Genoa (2002), and Vienna
(2005). In 2004 and 2006, FroCoS joined IJCAR, the International Joint Con-
ference on Automated Reasoning. Like its predecessors, FroCoS 2007 offered a
forum for the presentation and discussion of research activities on the combi-
nation, integration, analysis, modularization and interaction of formally defined
systems, with an emphasis on logic-based ones. These issues are important in
many areas of computer science, such as logic, computation, program devel-
opment and verification, artificial intelligence, automated reasoning, constraint
solving, declarative programming, and symbolic computation.

There were 31 submissions to FroCoS 2007. Each submission was reviewed
by at least three Programme Committee members. After extensive discussion
within the Programme Committee, 14 papers were accepted for presentation
and publication in this volume. In addition to technical papers, the volume also
includes four invited contributions by Sava Krstic (Intel Corporation, USA),
Roberto Sebastiani (University of Trento, Italy), Viorica Sofronie-Stokkermans
(Max-Planck-Institut fiir Informatik, Germany), and Michael Zakharyaschev
(Birkbeck College London, UK).

Many people and institutions contributed to making FroCoS 2007 a success.
We are indebted to the members of the Programme Committee and the addi-
tional refereees for the thorough reviewing work; the members of the FroCoS
Steering Committee for their support, to Andrei Voronkov for free use of the
EasyChair conference management system, to sponsorship from EPSRC, and to
Dave Shield and Thelma Williams for their invaluable assistance in hosting this
conference.

June 2007 Boris Konev
Frank Wolter
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Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL

Sava Krsti¢ and Amit Goel

Strategic CAD Labs, Intel Corporation

Abstract. We offer a transition system representing a high-level but
detailed architecture for SMT solvers that combine a propositional SAT
engine with solvers for multiple disjoint theories. The system captures
succintly and accurately all the major aspects of the solver’s global op-
eration: boolean search with across-the-board backjumping, communica-
tion of theory-specific facts and equalities between shared variables, and
cooperative conflict analysis. Provably correct and prudently underspec-
ified, our system is a usable ground for high-quality implementations of
comprehensive SMT solvers.

1 Introduction

SMT solvers are fully automated theorem provers based on decision procedures.
The acronym is for Satisfiability Modulo Theories, indicating that an SMT solver
works as a satisfiability checker, with its decision procedures targeting queries
from one or more logical theories. These proof engines have become vital in veri-
fication practice and hold an even greater promise, but they are still a challenge
to design and implement. From the seminal Simplify [9] to the current state-of-
the-art Yices [10], with notable exceptions such as UCLID (6], the prevailing wis-
dom has been that an SMT solver should contain a SAT solver for managing the
boolean complexity of the input formula and several specialized solvers—linear
arithmetic and “theory of uninterpreted functions” obbligato—that communi-
cate by exchanging equalities between variables (“the Nelson-Oppen style” [15]).
This much granted, there is a host of remaining design issues at various levels
of abstraction, the response to which distinguishes one solver from another.
Our goal is to define the top-level architecture of an SMT solver as a math-
ematical object that can be grasped as a whole and fruitfully reasoned about.
We want an abstract model that faithfully captures the intricacies of the solver’s
global operation—what is going on between the architectural components and
what is going on inside the components that is essential for interaction. We
achieve this goal by presenting the SMT solver as a non-deterministic transi-
tion system. The ten rules of our system (Figure 5) provide a rather detailed
rational reconstruction of the mainstream SMT solvers, covering the mecha-
nisms for boolean search, communication of theory-specific facts and equalities
between shared variables, and global conflict analysis. The system provides a
solid theoretical basis for implementations, which can explore various execution

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 1-27, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 S. Krsti¢ and A. Goel

strategies, refinements and optimizations, assured of fundamental correctness as
long as they “play by the rules”.

Following the precursor [12] to this paper, we adopt a logic with paramet-
ric polymorphism as the natural choice for SMT solvers, emphasizing cardinality
constraints—not the traditional stable-infinity condition—as an accurate expres-
sion of what matters for completeness of the Nelson-Oppen method in practice.
Our main results are the termination, soundness, and completeness theorems for
our transition system.

Related Work. We were inspired mainly by the work of Nieuwenhuis, Oliveras,
and Tinelli [16] on abstract DPLL and abstract DPLL modulo theories—transition
systems that model a DPLL-style SAT solver [8] and an SMT solver that extends
it with a solver for one theory. In the follow-up paper [3], the same authors with
Barrett extend their system with features for “splitting on demand” and derive
from it the DPLL(T,...,T,) architecture. This architecture is closely related
to our system NODPLL (Section 5), but is significantly less detailed and transpar-
ent. It refines DPLL modulo a single (composite) theory with appropriate purity
requirements on some, but not all rules. In contrast, NODPLL is explicitly modulo
multiple theories, with rules specifying actions of specific theory solvers and the
solvers’ interaction made vivid. For example, equality propagation is spelled out
in NODPLL, but which solver in DPLL(Ty,...,T,) derives x = z from x = y
and y = z is not clear. Another important difference is in the modeling of con-
flict analysis and it shows even if our systems are compared at the propositional
(SAT solver) level. While [16] and [3] view confict analysis abstractly, tucking it
in a general rule for backjumping, NODPLL has rules that directly cover its key
steps: conflict detection, the subsequent sequence of “explanations”, generation
of the “backjump clause”, and the actual backjump. In an SMT solver, in partic-
ular with multiple theories, conflict analysis is even more subtle than in a SAT
solver, and the authors of [16] are the first to point out its pitfalls (“too new
explanations”) and identify a condition for its correct behavior. NODPLL neatly
captures this condition as a guard of a rule.

Our work also builds on [7], which has a transition system modeling a Nelson-
Oppen solver for multiple theories, but does not address the cooperation with
the SAT solver. Formal models of SMT solvers that do handle a SAT solver
together with more than one theory are given only in the paper [3] discussed
above and earlier works [2], [5]. Barrett’s architecture of CVC Lite as described
in [2] is complex and too low-level for convenient analysis and application. The
system SMT (T, UT5) of Bozzano et al. [5] describes in pseudo-code a particular
approach for equality propagation taken by the MathSAT solver, which can be
modeled in NODPLL; see Section 5.6.

Outline. Section 2 contains (termino)logical background as developed in [12],
but divorcing the solver’s polymorphic language from HOL, to emphasize that

! The justification for the presence of non-stably-infinite theories in the Nelson-Oppen
framework is studied in recent papers [20,17,4]; in [12], it is shown that the concept
of stable-infinity can be dismissed altogether.
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EArray = (Array l mk_arrﬁ_'A"aY(o"B), read[Array(a,ﬂ),a]——*ﬁ’ Write[Array(a,E),a,ﬁ}—vArray(a,ﬁ))

Siier = (LiSt l cons[a,List(a)]—wList(a)’ n”List(r:x)Y head[List(a),a]HBool’ tail[List(a),List(a)]—»Boo|>
Fig. 1. Signatures for theories of some familiar datatypes. For space efficiency, the
constants’ arities are shown as superscripts. Xgq contains the type operator Bool and
standard LOGICAL CONSTANTS. All other signatures by definition contain Ygq, but to
avoid clutter we leave their Jgq-part implicit. In X'y, the symbol UF is for uninterpreted
functions and the intended meaning of @ is the function application. The list functions
head and tail are partial, so are represented as predicates in X\ js.

parametricity is not tied to higher-order logic, even though it is most conve-
niently expressed there. In Section 3, we overview purification—a somewhat
involved procedure in the context of parametric theories—and give a suitable
form of the non-deterministic Nelson-Oppen combination theorem of [12]. Sec-
tion 4 is a quick rendition of the core DPLL algorithm as a transition system
covering the essential features of modern SAT solvers. Section 5 contains the
description of our main transition system for modeling combined SMT solvers,
the basic correctness results for it, and some discussion. All proofs are given in
the appendix.

2 Preliminaries

We are interested in logical theories of common datatypes and their combinations
(Figure 1). A datatype has its syntax and semantics; both are needed to define
the theory of the datatype. We give a brief overview of the syntax and an
informal sketch of semantics, referring to [12] for technical details.

Types. A set O of symbols called TYPE OPERATORS, each with an associated
non-negative arity, and an infinite set of TYPE VARIABLES define the set Tp, of
TYPES over O. It is the smallest set that contains type variables and expressions
F(o1,...,0n), where F' € O has arity n and o; € Tpg.

A TYPE INSTANTIATION is a finite map from type variables to types. For
any type o and type instantiation 6 = [o1/a1,...,0n/an], 6(c) denotes the
simultaneous substitution of every occurrence of o; in o with o;. We say that 7
is an INSTANCE of o if there is some 6 such that 7 = 6(o).

Signatures. A SIGNATURE is a pair (O | K), where O is a set of type operators
and K is a set of CONSTANTS typed over O. By this we mean that every element
of K has an ARITY, which is a tuple of types (o0o,...,0n). Here, o1,...,0, are
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the argument types of k, and oy is its range type. Constants whose range type
is Bool will be called PREDICATES.

We will use the more intuitive notation k:: [o1,...,0,] — 00 to indicate the
arity of a constant. Moreover, we will write k: [11,...,7,] — 7o if there is a type
instantiation that maps oq,...,0, to 7,..., T, respectively. Note the use of :

and : for the “principal type” and “type instance” of k respectively. Also note
that arities are not types—the symbol — is not a type operator.?

Terms. For a given signature X' = (O | K) and every o € Tpy, we assume there
is an infinite set of variables of type o; we write them in the (name,type)-form
v?. The sets Tm, of X-TERMS OF TYPE o are defined inductively by these rules:

(1) every variable v? is in Tm,
(2) ifty € Tmyy,...,tn € Tm, and k: [11,...,70n] — 70, then kt1 ... t, € Tmy,

Type instantiations act on terms: define 6(t) to be the term obtained by
replacing every variable 7 in t with 2%(°). If ¢ € Tm,, then 6(t) € Tmy(s). We
define t' C ¢ to mean that t' = 6(t) for some 6, and we then say that ¢’ is a TYPE
INSTANCE of ¢t and ¢ is a TYPE ABSTRACTION of ¢'.

For every term ¢, there exists the MOST GENERAL ABSTRACTION t2P% charac-
terized by: (1) ¢t C #2b%; and (2) ¢’ C 3PS for every ¢’ such that ¢ C #'. The term
t2bs is unique up to renaming of type variables and can be obtained by erasing
all type information from ¢ and then applying a type inference algorithm. For
type inference, see, e.g., [13].

Semantics. The type operators List and Array have arities one and two respec-
tively. The meaning of List is a function of arity one (by abuse of notation, also
denoted List) that given a set F as an argument produces the set List(E) of all
lists with elements in E. The meaning of Array is a function that given two sets
I and E as arguments produces the set Array(I, E) of arrays indexed by I with
elements in F.

The meaning of polymorphic types is defined once we know the meaning of
type operators. For example, the meaning of the type Array(a, Array(a, ) is a
function that given any two sets I and FE (as interpretations of type variables
a, 3) produces the set Array(I, Array(I, E)). If there are no occurrences of type
variables in a type (e.g., List(Bool X Int)), then the meaning of that type is always
the same set; if the set is finite, we call the type FINITE.

The meaning of a constant is an indexed family of functions. For example,
the meaning of cons is the family {consg | E is a set}, where consg is a function
that takes an argument in E and an argument in List(E) and produces a result
in List(E).

The meanings of type operators and constants of a signature together deter-
mine a STRUCTURE for that signature. The structure gives meaning to all terms.

2 1In [12], the type and term languages asssociated with a signature were defined as
subsets of the higher-order logic, where the function space type operator is primitive
and so arities could be seen as types.
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Consider ¢t = read(write(a®™(A) & 26) j*). Once a and § are interpreted
as concrete sets (I and E, say) and interpretations for the variables a,i,z,j
(elements of Array(I, E),I, E,I respectively) are given, the polymorphic term
t becomes a well-defined element of E. In [12], which should be consulted for
more details, this element is denoted [t](:, p), where ¢ and p together define an
environment for t: . maps the type variables «, 3 to sets I, E respectively, and
p maps the variables a, i, z, j to elements of Array(I, E), I, E, I respectively.

As a boring exercise, the reader may furnish the signatures in Figure 1 with
meanings of their type operators and constants, thus obtaining definitions of
structures Zeq, 7UF, Zint, 7x , TArray, Ziist-

Satisfiability. A X-FORMULA is an element of Tmgool. If ¢ is a XY-formula and 7
is a Y-structure, we say that ¢ is SATISFIABLE in 7T if [¢](c, p) = true for some
environment (¢, p); this environment then is called a MODEL of ¢. We also say that
¢ is VALID if —¢ is unsatisfiable. Validity is denoted =7 ¢, and ¢1,...,¢n ET ¢
is an abbreviation for E7 ¢1 A -+ A ¢ D ¢. The THEORY of a structure is the
set of formulas that are valid in it.

An ATOMIC Y-FORMULA is either a propositional variable or a term of the
form kti ... tn, where k is a predicate. A Y-LITERAL is an atomic formula or
its negation. A CLAUSE is a disjunction of literals. A QUERY is a conjunction of
formulas. Clauses containing the same literals in different order are considered
equal. (We think of clauses and queries as sets of literals and formulas respec-
tively.) A CONVEX THEORY is defined by the property that if a set of literals
implies a disjunction of equalities, then one of the disjuncts must be implied.

A CARDINALITY CONSTRAINT is an “equality” of the form a = n, where «
is a type variable and n is a positive integer; an enviroment (t, p) satisfies this
constraint if v is in the domain of ¢ and the cardinality of the set ¢() is n.

Combining Structures. Two signatures are DISJOINT if the only type operators
and constants they share are those of Ygq. If 71,...,7, are structures with
pairwise disjoint signatures, then there is a well-defined sum structure T =
T + - - -+ 7,; the semantics of its type operators and constants is defined by the
structures they come from. The types and terms of each 7; are types and terms
of T too. We will call them PURE, or i-PURE when we need to be specific. The
attribute MIXED will be used for arbitrary terms and types of a sum structure.

Solvers. A SOLVER for a fragment of a theory is a sound and complete satisfia-
bility checker for sets of formulas (QUERIES) in the fragment. A STRONG SOLVER
checks satisfiability of queries that contain formulas and cardinality constraints.

In practice, theory solvers are built for queries consisting of literals only. The
well-known argument that this is sufficient in general begins with the observation
that every query @ is equisatisfiable with one of the form Q = & U {p1 &
®1,---,Pn < dn}, where the p; are propositional variables, the ¢; are literals,
and @y is a propositional query, the boolean skeleton of @. A truth assignment
M to propositional variables that satisfies &g can be extended to a model for &
if and only if the query of literals Qar = {¢}, ..., ¢, } is T-satisfiable, where ¢/, is
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either ¢; or —¢;, depending on whether M (p;) is true or false. Thus, satisfiability
of @ is decided by checking if Qs is satisfiable for some model M of ®,. This,
of course, calls for a SAT solver to efficiently enumerate the models M.

Parametricity. There is uniformity in the way “polymorphic” functions like cons
compute their results—a consequence of the fact that the definition of consg
takes the set E as a parameter, making no assumptions about it. Precisely pin-
ning down this uniformity concept is somewhat tricky and we content ourselves
with definitions of parametric type operators and parametric constants that are
most convenient for our purposes. They are needed for proper understanding of
Theorem 1 below, but not for much else in this paper. Thus, the reader may
safely proceed with only a cursory reading of the rest of this section.

Recall first that a relation between two sets A and B is a PARTIAL BIJECTION
if it can be seen as a bijection between a subset of A and a subset of B. Define an
n-ary set function F' to be PARAMETRIC if it is functorial on partial bijections.
This means that given any partial bijections f;: A; < B;, where i = 1,...,n,
there exists a partial bijection F(f1,..., fn): F(41,...,4,) « F(By,...,By);
moreover, there is a requirement that the identity and composition be pre-
served. That is, F(ida,,...,ida,) = idp(a,, . a,) and F(gio fi,...,gn o fn) =

F(gl,...,gn)OF(fl,...,fn), where A'i &Bz & i-

Consider a structure whose type operators are all parametric in the above
sense and let k :: [o1,...,0,] — 0¢ be a constant of this structure. Observe
that if a;,...,a,, are all type variables that occur in the types o;, then any
interpretation ¢ of type variables (that is, an assignment, for each i, of a set A;
to o) interprets each type o; as a set, say S;, and interprets k as a function
k,: Sy x -+ xS, — Sp. Suppose now we have two interpretations ¢, for type
variables, the first just as above, and the second with A} and S in place of A; and
S;. Suppose also that f; : A; < A are partial bijections. Since the type operators
of our structure are assumed parametric, there are induced partial bijections
gj: Sj < 8}, for j = 0,...,n. We say that the constant k is PARAMETRIC if
in this situation we have go(k,(z1,...,2n)) = kv (91(z1),- .., gn(zn)) for every
z1 € dom(f1),...,Zn € dom(fp).

Finally, a PARAMETRIC STRUCTURE is required to have all type operators and
all constants parametric. Our example structures Tgq, 7ur; Zint, T, TArray; ZList,
with the notable exception of 7yf, are all parametric; so are the structures de-
scribing sets, multisets, and arbitrary algebraic datatypes [12].

We should note that the well-known concept of REYNOLDS PARAMETRICITY
in programming languages [18] is neither weaker nor stronger than the concept
we are using. In particular, 7y is Reynolds parametric. See [12].

3 Purification and Non-deterministic Nelson-Oppen

In the untyped setting, to purify a query consisting of mixed formulas is to
transform it into an equisatisfiable query consisting of pure formulas. The trans-
formation iteratively replaces a pure subterm ¢ in a mixed formula with a fresh



