PEARSON

'Pront ice
Hall

Charles N. Fischer
Ronald K. Cytron
Richard J. LeBlanc, Jr. #

AR T

English reprint edition copyright © 2010 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS,
Original English language title from Proprietor’s edition of the Work.

Original English language title: Crafting a Compiler by Charles N. Fischer, Ronald K. Cytron, Richard J. LeBlanc,
Jr., Copyright © 2010
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley,
Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).
AR ENAR i Pearson Education (HFAE#H HARRHED BAURTEE RS HIRA HRRAT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).
RFHREARKMEER (FEEPEEE. RIBNITHERNREAEIERE) HERIT.

LERTRRBEERNARZLS BF: 01-2010-1905 5

AF IS Pearson Education US4 HE HRER) BABHIFE, THREFEFSHE.
RREARERE, BAL3E. SIREIE: 010-62782989 13701121933

BB RS B (CIP) #i7

I, 30/ (FE) B/F/R (Fischer, C.N.), FIEH (Cytron, R.K.), #fi2 (UrR.J L) . &
EiA. —-dbat: %R R, 20106

(KEHENBTEIEFLEMET)

ISBN 978-7-302-22720-5

I. Q% 1. Q- ©F- Oy I OmBPHLSB-—ME—HH -2 N. QIN762
W E A B B1E CIP HiEiz5 (2010) ¥ 088371 5

BRATENH: EHH

HEERIT: BHEAXEHR o b JEREEAEZHRE A B
http:/ /www.tup.com.cn B 5. 100084
B #: 010-62770175 BB H: 010-62786544

BB 5IREME: 010-62795954, jsjjc@tup.tsinghua.edu.cn

B B & 1% 010-62772015, zhiliang@tup.tsinghua.edu.cn
HHERFEERIT

=HHETTHEH B AR

2EFEEE

185230 ERgK: 44.75

201056 AK 1R Bl R 201046 A% 1 IREWRI
1~3000

79.00 7T

cEE:

A2 & HREH D
88 55 B bk b

+
Eo
&
J

: 026160-01

o B

A 21 e, HAZENLHF. BRURZSENNESFEEMBED . ZHFHFOE
RMAAWFES. BAFXERRAOAL, EREEZFTRBRE. REHT, F
ABFRBEFEAS I, MRZITEEN. HRERSHENBHEFTES, AT
INREA KV EFR, BEMWIEER DR ERE SRR E SRR .

EHE KU 1996 F77 4, SESIELZHRAT S, BEMRT “RETEH
BHAS (BEKR” F—RF51HEH, RIEAREORDRIRE. BA 21 e, &
MNABEHBREREETHEMBRRFOWE, EOARNEMLE, #— BT KEEAE, ¥
BEBFERT, —mREREE X EFREEATRERGRAR R R AT EHEE R
B RN RE LB, AREFE “REFENBFEIELEM RS (BERD”, U
SE . RV E KPR EAERTIHEM AR AE LR RAERN. EREERNER.
HRPRABIBEZESMHENETORB M, URRIEE “KEHENBTRIEL
BHMRS (RERD” MAELY, EE4RRMEMTE.

HHERF MR

Preface

Much has changed since Crafting a Compiler, by Fischer and LeBlanc, was
published in 1988. While instructors may remember the 5§-inch floppy disk of
software that accompanied that text, most students today have neither seen nor
held such a disk. Many changes have occurred in the programming languages
that students experience in class and in the marketplace. In 1991 the book
was available in two forms, with algorithms presented in either C or Ada.
While C remains a popular language, Ada has become relatively obscure and
did not achieve its predicted popularity. The C++ language evolved from
C with the addition of object-oriented features. Java™ was developed as a
simpler object-oriented language, gaining popularity because of its security
and ability to be run within a Web browser. The College Board Advanced
Placement curriculum moved from Pascal to C++ to Java.

While much has changed, students and faculty alike continue to study and
teach the subject of compiler construction. Research in the area of compilers
and programing language translation continues at a brisk pace, as compilers
are tasked with accommodating an increasing diversity of architectures and
programming languages. Software development environments depend on
compilers interacting successfully with a variety of software toolchain compo-
nents such as syntax-informed editors, performance profilers, and debuggers.
All modern software efforts rely on their compilers to check vigorously for
errors and to translate programs faithfully.

Some texts experience relatively minor changes over time, acquiring per-
haps some new exercises or examples. This book reflects a substantive revision
of the material from 1988 and 1991. While the focus of this text remains on
teaching the fundamentals of compiler construction, the algorithms and ap-
proaches have been brought into modern practice:

e Coverage of topics that have faded from practical use (e.g., attribute
grammars) has been minimized or removed altogether.

e Algorithms are presented in a pseudocode style that should be familiar to
students who have studied the fundamental algorithms of our discipline.

iii

iv Preface

Pseudocode enables a concise formulation of an algorithm and a rational
discussion of the algorithm’s purpose and construction.

The details of implementation in a particular language have been rele-
gated to the Crafting a Compiler Supplement which is available online:

http://www.pearsonhighered. com/fischer/

e Parsing theory and practice are organized to facilitate a variety of peda-
gogical approaches.

Some may study the material at a high level to gain a broad view of top-
down and bottom-up parsing. Others may study a particular approach
in greater detail. '

e The front- and back-end phases of a compiler are connected by the ab-
stract syntax tree (AST), which is created as the primary artifact of pars-
ing. Most compilers build an AST, but relatively few texts articulate its
construction and use.

The visitor pattern is introduced for traversing the AST during semantic
analysis and code generation.

e Laboratory and studio exercises are available to instructors.

Instructors can assign some components as exercises for the students
while other components are supplied from our course-support Web site.

Some texts undergo revision by the addition of more graduate-level material.
While such information may be useful in an advanced course, the focus of
Crafting a Compiler remains on the undergraduate-level study of compiler con-
struction. A graduate course could be offered using Chapters 13 and 14; with
the earlier portions of the text serving as reference material.

Text and Reference

As a classroom text, this book is oriented toward a curriculum that we have
developed over the past 25 years. The book is very flexible and has been
adopted for courses ranging from a three-credit upper-level course taught in
a ten-week quarter to a six-credit semester-long graduate course. The text
is accessible to any student who has a basic background in programming,
algorithms, and data structures. The text is well suited to a single semester or
quarter offering because its flexibility allows an instructor to craft a syllabus
according to his or her interests. Author-sponsored solutions are available for
those components that are not studied in detail. It is feasible to write portions
of a compiler from parsing to code generation in a single semester.

Preface

This book is also a valuable professional reference because of its complete
coverage of techniques that are of practical importance to compiler construc-
tion. Many of our students have reported, even some years after their grad-
uation, of their successful application of these techniques to problems they
encounter in their work. :

Instructor Resources

The Web site for this book can be found at http://www.pearsonhighered.
com/fischer/. The material posted for qualified instructors includes sample
laboratory and project assignments, studio (active-learning) sessions, libraries
of code that can be used as class-furnished solutions, and solutions to selected
exercises.

For access to these materials, qualified instructors should contact their
local Pearson Representative by visiting http: //www.pearsonhighered. com,
by sending email to computing@aw.com, or by visiting the Pearson Instructor
Resource Center at http://www.pearsonhighered.com/irc/.

Student Resources

The book’s Web site athttp: //www.pearsonhighered.com/fischer/ contains
working code for examples used throughout the book, including code for the
toy language ac that is introduced in Chapter 2. The site also contains tutorial
notes and a page with links to various compiler-construction tools.

Access to these materials may be guarded by a password that is distributed
with the book or obtained from an instructor.

Project Approach

This book offers a comprehensive coverage of relevant theoretical topics in
compiler construction. However, a cohesive implementation project is typi-
cally an important aspect of planning a curriculum in compiler construction.
Thus, the book and the online materials are biased in favor of a sequence of
exploratory exercises, culminating in a project, to support learning this mate-
rial.

Lab exercises, studio sessions, and course projects appear in the Crafting a
Compiler Supplement, and readers are invited to send us other materials or links
for posting at our Web site. The exercises parallel the chapters and progression
of material presented in the text. For example, Chapter 2 introduces the toy

vi Preface

language ac to give an overview of the compilation process. The Web site
contains full, working versions of the scanner, parser, semantics analyzer, and
code generator for that language. These components will be available in a
variety of source programming languages.

The Web site also offers material in support of developing a working
compiler for a simple language modeled after Java. This allows instructors to
assign some components as exercises while other components are provided
to fill in any gaps. Some instructors may provide the entire compiler and ask
students to implement extensions. Polishing and refining existing components
can also be the basis of class projects.

Pseudocode and Guides

A significant change from the Fischer and LeBlanc text is that algorithms
are no longer presented in any specific programming language such as C
or Ada. Instead, algorithms are presented in pseudocode using a style that
should be familiar to those who have studied even the most fundamental
algorithms [CLRS01]. Pseudocode simplifies the exposition of an algorithm
by omitting unnecessary detail. However, the pseudocode is suggestive of
constructs used in real programming languages, so implementation should be
straightforward. An index of all pseudocode methods is provided as a guide
at the end of this book.

The text makes extensive use of abbreviations (including acronyms) to
simplify exposition and to help readers acquire the terminology used in com-
piler construction. Each abbreviation is fully defined automatically at its first
reference in each chapter. For example, AST has already been used in this pref-
ace, as an abbreviation of abstract syntax tree, but context-free grammar (CFG)
has not. For further help, an index of all abbreviations appears as a guide at
the end of the book. The full index contains abbreviations and indicates where
they are referenced throughout the book. Terms such as guide are shown in
boldface. Each reference to such terms is included in the full index.

Using this Book

Anintroductory course on compiler construction could begin with Chapters 1,
2, and 3. For parsing technique, either top-down (Chapter 5) or bottom-up
(Chapter 6) could be chosen, but some instructors will choose to cover both.
Material from Chapter 4 can be covered as necessary to support the parsing
techniques that will be studied. Chapter 7 articulates the AST and presents the
visitor pattern for its traversal. Some instructors may assign AST-management
utilities as a lab exercise, while others may use the utilities provided by the

Preface vii

Web site. Various aspects of semantic analysis can then be covered at the
instructor’s discretion in Chapters 8 and 9. A quarter-based course could end
here, with another quarter continuing with the study of code generation, as
described next. '

Chapter 10 provides an overview of the Java Virtual Machine (JVM),
which should be covered if students will generate JVM code in their project.
Code generation for such virtual machines is covered in Chapter 11. Instructors
who prefer students to generate machine code could skip Chapters 10 and 11
and cover Chapters 12 and 13 instead. An introductory course could include
material from the beginning of Chapter 14 on automatic program optimization.

Further study could include more detail of the parsing techniques covered
in Chapters 4, 5, and 6. Semantic analysis and type checking could be studied
in greater breadth and depth in Chapters 8 and 9. Advanced concepts such as
static single assignment (SSA) Form could be introduced from Chapters 10
and 14. Advanced topics in program analysis and transformation, includ-
ing data flow frameworks, could be drawn from Chapter 14. Chapters 13
and 14 could be the basis for a gradute compiler course, with earlier chapters
providing useful reference material. :

Chapter Descriptions

Chapter1 Introduction

The text begins with an overview of the compilation process. The concepts
of constructing a compiler from a collection of components are emphasized.
An overview of the history of compilers is presented and the use of tools for
generating compiler components is introduced.

Chapter2 A Simple Compiler

The simple language ac is presented, and each of the compiler’s components
is discussed with respect to translating ac to another language, dc. These
components are presented in pseudocode, and complete code can be found in
the Crafting a Compiler Supplement.

Chapter3 Scanning—Theory and Practice

The basic concepts and techniques for building the lexical analysis components
of acompiler are presented. This discussion includes the development of hand-
coded scanners as well as the use of scanner-generation tools for implementing
table-driven lexical analyzers.

Chapter4 Grammars and Parsing

This chapter covers the fundamentals of formal language concepts, includ-
ing context-free grammars, grammar notation, derivations, and parse trees.
Grammar-analysis algorithms are introduced that are used in Chapters 5 and 6.

viii Preface

Chapter5 Top-Down Parsing

Top-down parsing is a popular technique for constructing relatively simple
parsers. This chapter shows how such parsers can be written using explicit
code or by constructing a table for use by a generic top-down parsing engine.
Syntactic error diagnosis, recovery, and repair are discussed.

Chapter 6 Bottom-Up Parsing

Most compilers for modern programming languages use one of the bottom-
up parsing techniques presented in this chapter. Tools for generating such
parsers automatically from a context-free grammar are widely available. The
chapter describes the theory on which such tools are built, including a sequence
of increasingly sophisticated approaches to resolving conflicts that hamper
parser construction for some grammars. Grammar and language ambiguity
are thoroughly discussed, and heuristics are presented for understanding and
resolving ambiguous grammars.

Chapter 7 Syntax-Directed Translation

This marks the mid-point of the book in terms of a compiler’s components.
Prior chapters have considered the lexical and syntactic analysis of programs.
A goal of those chapters is the construction of an AST. In this chapter, the
AST is introduced and an interface is articulated for constructing, managing,
and traversing the AST. This chapter is pivotal in the sense that subsequent
chapters depend on understanding both the AST and the visitor pattern that
facilitates traversal and processing of the AST. The Crafting a Compiler Supple-
ment contains a tutorial on the visitor pattern, including examples drawn from
common experiences.

Chapter 8 Symbol Tables and Declaration Processing

- This chapter emphasizes the use of a symbol table as an abstract component
that can be utilized throughout the compilation process. A precise interface is
defined for the symbol table, and various implementation issues and ideas are
presented. This discussion includes a study of the implementation of nested
scopes.

The semantic analysis necessary for processing symbol declarations is in-
troduced, including types, variables, arrays, structures, and enumerations. An
introduction to type checking is presented, including object-oriented classes,
subclasses, and superclasses.

Chapter9 Semantic Analysis

Additional semantic analysis is required for language specifications that are
not easily checked while parsing. Various control structures are examined,
including conditional branches and loops. The chapter includes a discussion
of exceptions and the semantic analysis they require at compile-time.

Preface ix

Chapter 10 Intermediate Representations
This chapter considers two intermediate representations are are widely used
by compilers. The first is the JVM instruction set and bytecode format, which
has become the standard format for representing compiled Java programs.
For readers who are interested in targeting the JVM in a compiler project,
Chapters 10 and 11 provide the necessary background and techniques. The
other representation is SSA Form, which is used by many optimizing com-
pilers. This chapter defines SSA Form, but its construction is delayed until
Chapter 14, where some requisite definitions and algorithms are presented.

Chapter11 Code Generation for a Virtual Machine

This chapter considers code generation for a virtual machine (VM). The ad-
vantages of considering such a target is that many of the details of runtime
support are subsumed by the VM. For example, most VMs offer an unlimited
number of registers, so that the issue of register allocation, albeit interesting,
can be postponed until the fundamentals of code generation are mastered.
The VM’s instruction set is typically at a higher level than machine code. For
example, a method call is often supported by a single VM instruction, while
the same call would require many more instructions in machine code.

While an eager reader interested in generating machine code may be
tempted to skip Chapter 11, we recommend studying this chapter before
attempting code generation at the machine-code level. The ideas from this
chapter are easily applied to Chapters 12 and 13, but they are easier to under-
stand from the perspective of a VM.

Chapter 12 Runtime Support

Much of the functionality embedded in a VM is its runtime support (e.g.,
its support for managing storage). This chapter discusses various concepts
and implementation strategies for providing the runtime support needed for
modern programming languages. Study of this material can provide an un-
derstanding of the construction of a VM. For those who write code generators
for a target architecture (Chapter 13), runtime support must be provided, so
the study of this material is essential to creating a working compiler.

The chapter includes discussion of storage that is statically allocated, stack
allocated, and heap allocated. References to nonlocal storage are considered,
along with implementation structures such as frames and displays to support
such references.

Chapter 13 Target Code Generation

This chapter is similar to Chapter 11, except that the target of code generation
is a relatively low-level instruction set when compared with a VM. The chapter
includes a thorough discussion of topics that arise in such code generation,
including register allocation, management of temporaries, code scheduling,
instruction selection, and some basic peephole optimization.

Preface

Chapter 14 Program Optimization

Most compilers include some capability for improving the code they generate.
This chapter considers some of the practical techniques commonly used by
compilers for program optimization. Advanced control flow analysis struc-
tures and algorithms are presented. An introduction to data flow analysis
is presented by considering some fundamental optimizations that are rela-
tively easy to implement. The theoretical foundation of such optimizations is
studied, and the chapter includes construction and use of SSA Form.

Acknowledgements

We collectively thank the following people who have supported us in prepar-
ing this text. We thank Matt Goldstein of Pearson Publishing for his patience
and support throughout the revision process. We apologize to Matt’s prede-
cessors for our delay in preparing this text. Jeff Holcomb provided technical
guidance in Pearson’s publication process, for which we are very grateful.
Our text was greatly improved at the hands of our copy editors. Stephanie
Moscola expeditiously and expertly proofread and corrected every chapter of
this text. She was extraordinarily thorough, and any remaining errors are the
authors’ fault. We are grateful for her keen eye and insightful suggestions. We
thank Will Benton for his editing of Chapters 12 and 13 and his authoring of
Section 12.5. We thank Aimee Beal who was retained by Pearson to copyedit
this book for style and consistency.

We are very grateful to the following colleagues for their time spent re-
viewing our work and providing valuable feedback: Ras Bodik (University of
California—Berkeley), Scott Cannon (Utah State University), Stephen Edwards
(Columbia University), Stephen Freund (Williams College), Jerzy Jaromczyk
(University of Kentucky), Hikyoo Koh (Lamar University), Sam Midkiff (Pur-
due University), Tim O'Neil (University of Akron), Kurt Stirewalt (Michigan
State University), Michelle Strout (Colorado State University), Douglas Thain
(University of Notre Dame), V. N. Venkatakrishnan (University of Illinois—
Chicago), Elizabeth White (George Mason University), Sherry Yang (Oregon
Institute of Technology), and Qing Yi (University of Texas—San Antonio).

Charles Fischer My fascination with compilers began in 1965 in Mr. Robert
Eddy’s computer lab. Our computer had all of 20 kilobytes of main memory,
and our compiler used punched cards as its intermediate form, but the seed
was planted. ‘

My education really began at Cornell University, where I learned the depth
and rigor of computing. David Gries’ seminal compiler text taught me much
and set me on my career path.

Preface xi

The faculty at Wisconsin, especially Larry Landweber and Tad Pinkerton,
gave me free rein in developing a compiler curriculum and research program.
Tad, Larry Travis and Manley Draper, at the Academic Computing Center, gave
me the time and resources to learn the practice of compiling. The UW-Pascal
compiler project introduced me to some outstanding students, including my
co-author Richard LeBlanc. We learned by doing, and that became my teaching
philosophy.

. Over the years my colleagues, especially Tom Reps, Susan Horwitz, and
Jim Larus, freely shared their wisdom and experience; I learned much. On
the architectural side, Jin Goodman, Guri Sohi, Mark Hill, and David Wood
taught me the subtleties of modern microprocessors. A compiler writer must
thoroughly understand a processor to harness its full power.

My greatest debt is to my students who brought enormous energy and
enthusiasm to my courses. They eagerly accepted the challenges I presented.
A full compiler, from scanner to code generator, must have seemed impossible
in one semester, but they did it, and did it well. Much of that experience
has filtered its way into this text. I trust it will be helpful in teaching a new
generation how to craft a compiler.

Ron K.Cytron My initial interest and subsequent research into programming
languages and their compilers are due in large part to the outstanding mentors
who have played pivotal roles in my career. Ken Kennedy, of blessed memory,
taught my compilers classes at Rice University. The courses I now teach are
patterned after his approach, especially the role that lab assignments play in
helping students understand the material. Ken Kennedy was an outstanding
educator, and I can only hope to connect with students as well as he could.
He hosted me one summer at IBM T.J. Watson Research Labs, in Yorktown
Heights, New York, where I worked on software for automatic parallelization.
During that summer my investigations naturally led me to the research of
Dave Kuck and his students at the University of Illinois.

I still consider myself so very fortunate that Dave took me on as his
graduate student. Dave Kuck is a pioneer in parallel computer architecture
and in the role compilers can play to make to make such advanced systems
easier to program. I strive to follow his example of hard work, integrity, and
perseverance and to pass those lessons on to my students. I also experienced
the vibrancy and fun that stems from investigating ideas in a group, and I have
tried to create similar communities among my students.

My experiences as an undergraduate and graduate student then led me to
Fran Allen of IBM Research, to whom I shall always be grateful for allowing
me to join her newly formed PTRAN group. Fran has inspired generations
of research in data flow analysis, program optimization, and automatic par-
allelization. She has amazing intuition into the important problems and their

xii Preface

likely solution. In talking with colleagues, some of our best ideas are due to
Fran and the suggestions, advice, or critiques she has offered us.

Some of the best years of my professional life were spent learning from
and working with Fran and my PTRAN colleagues: Michael Burke, Philippe
Charles, Jong-Deok Choi, Jeanne Ferrante, Vivek Sarkar, and David Shields.
At IBM I also had the privilege of learning from and working with Barry
Rosen, Mark Wegman, and Kenny Zadeck. While the imprint of my friends
and colleagues can be found throughout this text, any mistakes are mine.

If the reader notices that the number 431 appears frequently in this book,
it is an homage to the students who have studied compilers with me at Wash-
ington University. I have learned as much from my students as I have taught
them, and my contribution to this book stems largely from my experiences in
the classroom and lab.

Finally, I thank my wife and children for putting up with the time I wanted
to spend working on this book. They have shown patience and understanding
throughout this effort. And thank you, Aunt Carole, for always asking how
this book was coming along.

Richard LeBlanc After becoming more excited about computers than physics
problem sets while getting my B.S. in physics, I moved to Madison and enrolled
at the University of Wisconsin as a computer science Ph.D. student in 1972.
Two years later, a young assistant professor, Charles Fischer, who had just
received his Ph.D. from Cornell, joined the faculty of the Computer Science
Department. The first course he taught was a graduate compiler course, CS
701. I was enrolled in that course and still remember it as a really remarkable
learning experience, all the more impressive since it was his first time teaching
the course. We obviously hit it off well, since this introduction has led to a
rather lengthy series of collaborations.

Through the sponsorship of Larry Travis, | began working at the Academic
Computing Center in the summer of 1974. I was thus already part of that
organization when the UW-Pascal project began a year later. That project
not only gave me the opportunity to apply what I had learned in the two
courses [had just taken, but also some great lessons about the impact of good
design and design reviews. I also benefited from working with two fellow
graduate students, Steve Zeigler and Marty Honda, from whom I learned how
much fun it can be to be part of an effective software development team. We
all discovered the value of working in Pascal, a well-designed language that
requires disciplined thought while programming, and of using a tool that you
are developing, since we bootstrapped from the Pascal P-Compiler to our own
compiler that generated native code for the Univac 1108 early in the project.

Upon completion of my graduate work, I took a faculty position at Geor-
gia Tech, drawn by the warmer weather and an opportunity to be part of

Preface xiii

a distributed computing research project led by Phil Enslow, who provided
invaluable guidance in the early years of my career. Iimmediately had the
opportunity to teach a compiler course and attempted to emulate the CS 701
course at Wisconsin, since I strongly believed in the value of the project-based
approach Charles used. I quickly realized that that having the students write
a complete compiler in a 10-week quarter was too much of a challenge. I thus
began using the approach of giving them a working compiler for a very tiny
language and building the project around extending all of the components of
that compiler to compile a more complex language. The base compiler that I
used in my 10-week course became one of the support items distributed with
the Fischer-LeBlanc text.

My career path has taken me to greater involvement with software engi-
neering and educational activities than with compiler research. AsIlook back
on my early compiler experiences at Wisconsin, I clearly see the seeds of my
interests in both of these areas. The decision that Charles and I made to write
the original Crafting a Compiler was based in our belief that we could help other
instructors offer their students an outstanding educational experience through
a project-based compiler course. With the invaluable help of our editor, Alan
Apt, and a great set of reviewers, I believe we succeeded. Many colleagues
have expressed to me their enthusiasm for our original book and Crafting a
Compiler with C. Their support has been a great reward and it also served as
encouragement toward finally completing this text. Particular thanks go to Joe
Bergin, who went well beyond verbal support, translating some of our early
software tools into new programming languages and allowing us to make his
versions available to other instructors.

My years at Georgia Tech provided me with wonderful opportunities to
develop my interests in computing education. I was fortunate to have been
part of an organization led by Ray Miller and then Pete Jensen during the
first part of my career. Beginning in 1990, I had the great pleasure of working
with Peter Freeman as we created and developed the College of Computing.
Beyond the many ways he mentored me during our work at Georgia Tech, Peter
encouraged my broad involvement with educational issues through my work
with the ACM Education Board, which has greatly enriched my professional
life over the last 12 years. -

Finally, I thank my family, including my new granddaughter, for sharing

me with this book writing project, which at times must have seemed like it
would never end.

Dedication

CNEF: To Lisa, always
In memory of Stanley J. Winiasz,
one of the greatest generation

RKC: To Betsy, Jessica, Melanie, and Jacob
In memory of Ken Kennedy

RJL: To Lanie, Aidan, Maria and Evolette

Brief Contents

1

© & N SN U R W N

I~ T . T Y
R OO N NS

Introduction

A Simple Compiler

Scanning—Theory and Practice
Grammars and Parsing

Top-Down Parsing

Bottom-Up Parsing

Syntax-Directed Translation

Symbol Tables and Declaration Processing
Semantic Analysis

Intermediate Representations

Code Generation for a Virtual Machine
Runtime Support

Target Code Generation

Program Optimization

Xvi

31

57
113
143
179
235
279
343
391
417
445
489

547

Contents

1 Introduction 1
1.1 History of Compilation 2
1.2 WhatCompilersDo. 4

1.2.1 Machine Code Generated by Compilers 4
122 TargetCodeFormats 7
13 Interpreters 9
14 SyntaxandSemantics 10
141 StaticSemantics 11
142 Runtime Semantics 12
1.5 Organization ofa Compiler 14
151 TheScanner 16
152 TheParser 16
1.5.3 The Type Checker (Semantic Analysis) 17
154 Translator (Program Synthesis). 17
155 SymbolTables 18
156 TheOptimizer 18
157 TheCodeGenerator. 19
1.5.8 Compiler Writing Tools 19
1.6 Programming Language and Compiler Design 20
1.7 Computer Architecture and Compiler Design 2]
1.8 Compiler Design Considerations 22
1.8.1 Debugging (Development) Compilers 22
1.8.2 Optimizing Compilers 23
1.8.3 Retargetable Compilers 23
19 Integrated Development Environments 24
EXercises e, 26

