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Preface

Much has changed since Crafting a Compiler, by Fischer and LeBlanc, was
published in 1988. While instructors may remember the 5§-inch floppy disk of
software that accompanied that text, most students today have neither seen nor
held such a disk. Many changes have occurred in the programming languages
that students experience in class and in the marketplace. In 1991 the book
was available in two forms, with algorithms presented in either C or Ada.
While C remains a popular language, Ada has become relatively obscure and
did not achieve its predicted popularity. The C++ language evolved from
C with the addition of object-oriented features. Java™ was developed as a
simpler object-oriented language, gaining popularity because of its security
and ability to be run within a Web browser. The College Board Advanced
Placement curriculum moved from Pascal to C++ to Java.

While much has changed, students and faculty alike continue to study and
teach the subject of compiler construction. Research in the area of compilers
and programing language translation continues at a brisk pace, as compilers
are tasked with accommodating an increasing diversity of architectures and
programming languages. Software development environments depend on
compilers interacting successfully with a variety of software toolchain compo-
nents such as syntax-informed editors, performance profilers, and debuggers.
All modern software efforts rely on their compilers to check vigorously for
errors and to translate programs faithfully.

Some texts experience relatively minor changes over time, acquiring per-
haps some new exercises or examples. This book reflects a substantive revision
of the material from 1988 and 1991. While the focus of this text remains on
teaching the fundamentals of compiler construction, the algorithms and ap-
proaches have been brought into modern practice:

e Coverage of topics that have faded from practical use (e.g., attribute
grammars) has been minimized or removed altogether.

e Algorithms are presented in a pseudocode style that should be familiar to
students who have studied the fundamental algorithms of our discipline.

iii
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Pseudocode enables a concise formulation of an algorithm and a rational
discussion of the algorithm’s purpose and construction.

The details of implementation in a particular language have been rele-
gated to the Crafting a Compiler Supplement which is available online:

http://www.pearsonhighered. com/fischer/

e Parsing theory and practice are organized to facilitate a variety of peda-
gogical approaches.

Some may study the material at a high level to gain a broad view of top-
down and bottom-up parsing. Others may study a particular approach
in greater detail. '

e The front- and back-end phases of a compiler are connected by the ab-
stract syntax tree (AST), which is created as the primary artifact of pars-
ing. Most compilers build an AST, but relatively few texts articulate its
construction and use.

The visitor pattern is introduced for traversing the AST during semantic
analysis and code generation.

e Laboratory and studio exercises are available to instructors.

Instructors can assign some components as exercises for the students
while other components are supplied from our course-support Web site.

Some texts undergo revision by the addition of more graduate-level material.
While such information may be useful in an advanced course, the focus of
Crafting a Compiler remains on the undergraduate-level study of compiler con-
struction. A graduate course could be offered using Chapters 13 and 14; with
the earlier portions of the text serving as reference material.

Text and Reference

As a classroom text, this book is oriented toward a curriculum that we have
developed over the past 25 years. The book is very flexible and has been
adopted for courses ranging from a three-credit upper-level course taught in
a ten-week quarter to a six-credit semester-long graduate course. The text
is accessible to any student who has a basic background in programming,
algorithms, and data structures. The text is well suited to a single semester or
quarter offering because its flexibility allows an instructor to craft a syllabus
according to his or her interests. Author-sponsored solutions are available for
those components that are not studied in detail. It is feasible to write portions
of a compiler from parsing to code generation in a single semester.
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This book is also a valuable professional reference because of its complete
coverage of techniques that are of practical importance to compiler construc-
tion. Many of our students have reported, even some years after their grad-
uation, of their successful application of these techniques to problems they
encounter in their work. :

Instructor Resources

The Web site for this book can be found at http://www.pearsonhighered.
com/fischer/. The material posted for qualified instructors includes sample
laboratory and project assignments, studio (active-learning) sessions, libraries
of code that can be used as class-furnished solutions, and solutions to selected
exercises.

For access to these materials, qualified instructors should contact their
local Pearson Representative by visiting http: //www.pearsonhighered. com,
by sending email to computing@aw.com, or by visiting the Pearson Instructor
Resource Center at http://www.pearsonhighered.com/irc/.

Student Resources

The book’s Web site athttp: //www.pearsonhighered.com/fischer/ contains
working code for examples used throughout the book, including code for the
toy language ac that is introduced in Chapter 2. The site also contains tutorial
notes and a page with links to various compiler-construction tools.

Access to these materials may be guarded by a password that is distributed
with the book or obtained from an instructor.

Project Approach

This book offers a comprehensive coverage of relevant theoretical topics in
compiler construction. However, a cohesive implementation project is typi-
cally an important aspect of planning a curriculum in compiler construction.
Thus, the book and the online materials are biased in favor of a sequence of
exploratory exercises, culminating in a project, to support learning this mate-
rial.

Lab exercises, studio sessions, and course projects appear in the Crafting a
Compiler Supplement, and readers are invited to send us other materials or links
for posting at our Web site. The exercises parallel the chapters and progression
of material presented in the text. For example, Chapter 2 introduces the toy
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language ac to give an overview of the compilation process. The Web site
contains full, working versions of the scanner, parser, semantics analyzer, and
code generator for that language. These components will be available in a
variety of source programming languages.

The Web site also offers material in support of developing a working
compiler for a simple language modeled after Java. This allows instructors to
assign some components as exercises while other components are provided
to fill in any gaps. Some instructors may provide the entire compiler and ask
students to implement extensions. Polishing and refining existing components
can also be the basis of class projects.

Pseudocode and Guides

A significant change from the Fischer and LeBlanc text is that algorithms
are no longer presented in any specific programming language such as C
or Ada. Instead, algorithms are presented in pseudocode using a style that
should be familiar to those who have studied even the most fundamental
algorithms [CLRS01]. Pseudocode simplifies the exposition of an algorithm
by omitting unnecessary detail. However, the pseudocode is suggestive of
constructs used in real programming languages, so implementation should be
straightforward. An index of all pseudocode methods is provided as a guide
at the end of this book.

The text makes extensive use of abbreviations (including acronyms) to
simplify exposition and to help readers acquire the terminology used in com-
piler construction. Each abbreviation is fully defined automatically at its first
reference in each chapter. For example, AST has already been used in this pref-
ace, as an abbreviation of abstract syntax tree, but context-free grammar (CFG)
has not. For further help, an index of all abbreviations appears as a guide at
the end of the book. The full index contains abbreviations and indicates where
they are referenced throughout the book. Terms such as guide are shown in
boldface. Each reference to such terms is included in the full index.

Using this Book

Anintroductory course on compiler construction could begin with Chapters 1,
2, and 3. For parsing technique, either top-down (Chapter 5) or bottom-up
(Chapter 6) could be chosen, but some instructors will choose to cover both.
Material from Chapter 4 can be covered as necessary to support the parsing
techniques that will be studied. Chapter 7 articulates the AST and presents the
visitor pattern for its traversal. Some instructors may assign AST-management
utilities as a lab exercise, while others may use the utilities provided by the
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Web site. Various aspects of semantic analysis can then be covered at the
instructor’s discretion in Chapters 8 and 9. A quarter-based course could end
here, with another quarter continuing with the study of code generation, as
described next. '

Chapter 10 provides an overview of the Java Virtual Machine (JVM),
which should be covered if students will generate JVM code in their project.
Code generation for such virtual machines is covered in Chapter 11. Instructors
who prefer students to generate machine code could skip Chapters 10 and 11
and cover Chapters 12 and 13 instead. An introductory course could include
material from the beginning of Chapter 14 on automatic program optimization.

Further study could include more detail of the parsing techniques covered
in Chapters 4, 5, and 6. Semantic analysis and type checking could be studied
in greater breadth and depth in Chapters 8 and 9. Advanced concepts such as
static single assignment (SSA) Form could be introduced from Chapters 10
and 14. Advanced topics in program analysis and transformation, includ-
ing data flow frameworks, could be drawn from Chapter 14. Chapters 13
and 14 could be the basis for a gradute compiler course, with earlier chapters
providing useful reference material. :

Chapter Descriptions

Chapter1  Introduction

The text begins with an overview of the compilation process. The concepts
of constructing a compiler from a collection of components are emphasized.
An overview of the history of compilers is presented and the use of tools for
generating compiler components is introduced.

Chapter2 A Simple Compiler

The simple language ac is presented, and each of the compiler’s components
is discussed with respect to translating ac to another language, dc. These
components are presented in pseudocode, and complete code can be found in
the Crafting a Compiler Supplement.

Chapter3  Scanning—Theory and Practice

The basic concepts and techniques for building the lexical analysis components
of acompiler are presented. This discussion includes the development of hand-
coded scanners as well as the use of scanner-generation tools for implementing
table-driven lexical analyzers.

Chapter4  Grammars and Parsing

This chapter covers the fundamentals of formal language concepts, includ-
ing context-free grammars, grammar notation, derivations, and parse trees.
Grammar-analysis algorithms are introduced that are used in Chapters 5 and 6.
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Chapter5 Top-Down Parsing

Top-down parsing is a popular technique for constructing relatively simple
parsers. This chapter shows how such parsers can be written using explicit
code or by constructing a table for use by a generic top-down parsing engine.
Syntactic error diagnosis, recovery, and repair are discussed.

Chapter 6  Bottom-Up Parsing

Most compilers for modern programming languages use one of the bottom-
up parsing techniques presented in this chapter. Tools for generating such
parsers automatically from a context-free grammar are widely available. The
chapter describes the theory on which such tools are built, including a sequence
of increasingly sophisticated approaches to resolving conflicts that hamper
parser construction for some grammars. Grammar and language ambiguity
are thoroughly discussed, and heuristics are presented for understanding and
resolving ambiguous grammars.

Chapter 7  Syntax-Directed Translation

This marks the mid-point of the book in terms of a compiler’s components.
Prior chapters have considered the lexical and syntactic analysis of programs.
A goal of those chapters is the construction of an AST. In this chapter, the
AST is introduced and an interface is articulated for constructing, managing,
and traversing the AST. This chapter is pivotal in the sense that subsequent
chapters depend on understanding both the AST and the visitor pattern that
facilitates traversal and processing of the AST. The Crafting a Compiler Supple-
ment contains a tutorial on the visitor pattern, including examples drawn from
common experiences.

Chapter 8  Symbol Tables and Declaration Processing

- This chapter emphasizes the use of a symbol table as an abstract component
that can be utilized throughout the compilation process. A precise interface is
defined for the symbol table, and various implementation issues and ideas are
presented. This discussion includes a study of the implementation of nested
scopes.

The semantic analysis necessary for processing symbol declarations is in-
troduced, including types, variables, arrays, structures, and enumerations. An
introduction to type checking is presented, including object-oriented classes,
subclasses, and superclasses.

Chapter9  Semantic Analysis

Additional semantic analysis is required for language specifications that are
not easily checked while parsing. Various control structures are examined,
including conditional branches and loops. The chapter includes a discussion
of exceptions and the semantic analysis they require at compile-time.
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Chapter 10  Intermediate Representations
This chapter considers two intermediate representations are are widely used
by compilers. The first is the JVM instruction set and bytecode format, which
has become the standard format for representing compiled Java programs.
For readers who are interested in targeting the JVM in a compiler project,
Chapters 10 and 11 provide the necessary background and techniques. The
other representation is SSA Form, which is used by many optimizing com-
pilers. This chapter defines SSA Form, but its construction is delayed until
Chapter 14, where some requisite definitions and algorithms are presented.

Chapter11  Code Generation for a Virtual Machine

This chapter considers code generation for a virtual machine (VM). The ad-
vantages of considering such a target is that many of the details of runtime
support are subsumed by the VM. For example, most VMs offer an unlimited
number of registers, so that the issue of register allocation, albeit interesting,
can be postponed until the fundamentals of code generation are mastered.
The VM’s instruction set is typically at a higher level than machine code. For
example, a method call is often supported by a single VM instruction, while
the same call would require many more instructions in machine code.

While an eager reader interested in generating machine code may be
tempted to skip Chapter 11, we recommend studying this chapter before
attempting code generation at the machine-code level. The ideas from this
chapter are easily applied to Chapters 12 and 13, but they are easier to under-
stand from the perspective of a VM.

Chapter 12 Runtime Support

Much of the functionality embedded in a VM is its runtime support (e.g.,
its support for managing storage). This chapter discusses various concepts
and implementation strategies for providing the runtime support needed for
modern programming languages. Study of this material can provide an un-
derstanding of the construction of a VM. For those who write code generators
for a target architecture (Chapter 13), runtime support must be provided, so
the study of this material is essential to creating a working compiler.

The chapter includes discussion of storage that is statically allocated, stack
allocated, and heap allocated. References to nonlocal storage are considered,
along with implementation structures such as frames and displays to support
such references.

Chapter 13  Target Code Generation

This chapter is similar to Chapter 11, except that the target of code generation
is a relatively low-level instruction set when compared with a VM. The chapter
includes a thorough discussion of topics that arise in such code generation,
including register allocation, management of temporaries, code scheduling,
instruction selection, and some basic peephole optimization.
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Chapter 14  Program Optimization

Most compilers include some capability for improving the code they generate.
This chapter considers some of the practical techniques commonly used by
compilers for program optimization. Advanced control flow analysis struc-
tures and algorithms are presented. An introduction to data flow analysis
is presented by considering some fundamental optimizations that are rela-
tively easy to implement. The theoretical foundation of such optimizations is
studied, and the chapter includes construction and use of SSA Form.
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