: G - =
“ .LLEM‘;...:«T
MODERN PESSPECTIV
T o /=

E =
—

e

A MODERN PERSPECTIVE

Gary J. Nutt

UNIVERSITY OF COLORADO

A
v'v ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts m Harlow, England m Menlo Park, California m Berkeley, California
Don Mills, Ontario m Sydney m Bonn m Amsterdam m Tokyo m Mexico City

Senior Acquisitions Editor: J. Carter Shanklin
Editorial Assistant: Angela Buenning
Production Editor: Patricia A. 0. Unubun
Compositor: TKM Productions

Text Designer: Paul Uhl, Design Associates
Cover Illustrator: Robin Jareaux

Cover Designer: Eileen Hoff

Access the latest information about Addison-Wesley titles from our World Wide Web site:
http://www.awl.com/cseng

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial capital letters or in all
capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

“CHANGES” Words and Music by David Bowie

©1971 EMI MUSIC PUBLISHING LTD., London WC2HOEA, TINTORETTO MUSIC and MOTH MUSIC
All Rights for EMI MUSIC PUBLISHING LTD. Controlled and Administered by SCREEN GEMS-EMI
MUSIC INC. All Rights to TINTORETTO MUSIC. Administered by RZO MUSIC. All Rights for MOTH
MUSIC Administered by CHRYSALIS SONGS. All Rights Reserved. International Copyright Secured.
Used by Permission.

“STAIRWAY TO HEAVEN" Words & music by Jimmy Page and Robert Plant

@1972 Superhype Publishing

All Rights administered by WB Music Corp. All Rights Reserved. Used by Permission.
WARNER BROS. PUBLICATIONS U.S., INC., Miami, FL. 33014

“TICK TOCK” by Nile Rodgers, Jimmie Vaughan, Jerry Williams

©1990 Sony Songs, Inc. (Tommy Jymi, Inc.), R Mode Music (BMI), and Urge Music (ASCAP)

All Rights o/b/o Sony Songs, Inc. (Tommy Jymi, Inc.)(BMI) administered by Warner-Tamerlane
Publishing Corp. (BMI). All Rights Reserved. Used by Permission. WARNER BROS. PUBLICATIONS U.S.
INC., Miama, FL. 33014

“TRUCKIN'“ Lyrics by Robert Hunter Copyright © 1970, Ice Nine Publishing Co., Inc.

Library of Congress Catalog Card Number: 97-70383

Copyright © 1997 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a database or retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, record-
ing, or any other media embodiments now known or hereafter to become known, without the prior
written permission of the publisher. Printed in the United States of America.

ISBN 0-8053-12951
123456789 10-MA-0100999897
First printing, March 1997

Preface

Operating systems is an exciting software area because the design of an operat-

ing system exerts a major influence on the overall function and performance of
the entire computer. Today there are basically three types of books that introduce
this topic to undergraduates:

B The first type provides a detailed description of one or more different
operating systems. This approach is particularly useful if you just want to
know how a particular operating system works without learning much
about how all operating systems work.

B The second type is an evolution of the first in that it bases all its explana-
tion around a single pedagogical system. It usually provides enough
information to derive the underlying principles of good operating sys-
tems, but these principles often are obscured by the explanation of the
pedagogical system.

B The third type is written to be independent of any particular operating sys-
tem. It focuses on the theory behind all operating systems. It tends to leave
you without that important link to how an operating system is really built.

I strongly believe that it is important to understand the principles behind the]

designs of all operating systems and to see how those principles are put into prac-
tice in real operating systems. The goal of this book is to provide a complete dis-
cussion of theory, along with an extensive set of coding and algorithm examples.
The material is presented so that the student can easily differentiate among oper-
ating systems fundamentals and the detailed coding examples. Highlighted
throughout are issues of performance, since this is a fundamental factor affecting
how an operating system is designed. However, the coverage of performance is
not intended to be comprehensive in nature. Additional emphasis is also placed

on how various parts of the system are related to real-world demand and hard-

ware constraints. I decided to forego extensive coverage of analysis and perfor-
mance theory in favor of explanation of performance issues. Students should
have plenty of time to study analysis techniques in a graduate-level operating sys-
tem course.

° PREFACE

The main part of the text presents operating systems fundamentals, along
with general examples. It also includes three types of examples: In The Cockpit
examples illustrate how to use concepts being explained in the chapter. In The
Hangar examples focus on how these concepts can be implemented, and perfor-
mance issues are highlighted in Performance Tuning boxes. If desired, the reader
could ignore these examples and focus only on operating systems theory. Or one
could browse the main text but focus primarily on these examples for a course
that emphasizes a hands-on approach to operating systems.

The intent of including a variety of code examples is to describe operating

| systems more concretely and provide samples of the implementation of OS the-

ory. Sometimes these examples include descriptions at the level of programs and
algorithms. A few of these code examples are complete programs that have been

. compiled and executed. Most examples, however, are simply descriptions of

algorithms or techniques using the C programming language. These descriptions
deliberately omit detail that would be necessary in an actual implementation but

' that do not contribute to the understanding of the algorithm. The context in which

the code appears should make clear when the code is an actual implementation;

. otherwise it should always be assumed to be a description of an algorithm or tech-
' nique. I believe that detailed descriptions are mandatory for describing operating

systems. I also believe that full implementations contain so many code-specific
details that the essence of the ideas being illustrated are difficult to abstract and
separate from the details of the language implementation. I have experimented
with using pseudo code languages for these descriptions, but students and

- reviewers have consistently preferred the use of C. Be careful not to interpret the

descriptions in C as complete implementations.

Topic Order

' The order of presentation is based on my experience teaching operating systems

courses with input from many experienced instructors. This organization thus
reflects the combined knowledge and experience of many different teachers and
I believe the result is logical, conducive to learning, and generally accepted by
most operating system instructors.

Each chapter begins with a transition from the previous chapter and a pre-
view of what is covered in the current chapter. Students can look at this material
as well as the summary at the end of the chapter to get a quick idea of what a
chapter is about.

Chapters 1-4 consist of important introductory material that provides a solid
foundation for the study of operating systems. Teachers may decide to go over

- this material rather quickly, perhaps assigning it as outside reading material,

especially if this was covered in other courses. However, understanding this
material is critical before one dives into the further study of the meat of operating
systems, starting in Chapter 5.

PREFACE Q

B Chapter 1 shows how operating systems fit into software technology. In
earlier drafts, an historical perspective had been included; instructors
tend to like a little history and context, but many students think it is bor-
ing, so we have dispensed with history.

B Chapter 2 is unique among operating system books in that it considers
how to use an operating system, particularly how to use multiple pro-
cesses. This chapter was added because my experience with computer
science juniors and seniors is that they may have written considerable
single-threaded code but are far less likely to have written or studied
multithreaded software. This chapter offers an immediate opportunity to
learn this new material.

B Chapter 3 describes the fundamental organization of operating systems,
including implementation strategies.

B Chapter 4 finishes the preliminaries for studying operating systems—com-
puter organization. For students who have already taken a computer orga-
nization class, the first half of Chapter 4 will be elementary. The second
half describes interrupts, emphasizing the aspects that are critical to oper-
ating systems.

Chapter 5 describes device management, specifically general techniques,
buffering, and device drivers. It is tempting to become completely immersed in
Linux device drivers. However, I resisted this temptation to focus instead on a
macro-level view of the purpose and general organization of interrupt-driven
I/0. Included are extensive boxed sections on device drivers, but these stop
short of providing an actual Linux driver. The chapter examines devices before
considering processes because devices provide an elementary case in which
physical concurrency exists in the computer and the software must be care-

fully designed to control that concurrency. This provides a natural introduction |

to process management.

Chapters 6-10 are devoted to process management. They start from the
basic tasks and organization of process and resource managers (Chapter 6) and
move to scheduling (Chapter 7), synchronization (Chapters 8 and 9), and dead-
lock (Chapter 10).

Chapter 11 deals with traditional issues in memory management, while ‘

Chapter 12 covers the contemporary approach to memory managers using virtual
memory. Because of the popularity of paging, most of the discussion is directed
at this technology. However, with the current trends in memory technology, it
would be a mistake to ignore segmentation. Thus part of this discussion deals
with segmentation. Unfortunately, the best example of a robust segmentation
system is still the (now obsolete) Multics system.

Chapter 13 describes file management. Less space is devoted to file man-

agement than is customary in operating systems books because it is not as diffi- |

cult to understand as process management and memory management. This
discussion is augmented in Chapter 16, which deals with remote files.

@ PREFACE

Chapter 14 provides a general discussion of protection mechanisms and
security policies. It might be argued that this section belongs in the process man-
agement discussion, although much of the technology is just as closely related to
files, memory, and other resources. It is much easier for someone to appreciate
the need for protection and security after they have seen the process, memory,
and file managers.

Chapters 15-17 introduce operating system technology to support distrib-
uted computing. Distributed computing is a dominant aspect of modern operating

- systems and I feel strongly that coverage of this important issue belongs in all
introductory texts on operating systems.

|

The study of operating systems has traditionally been one of the most chal-
lenging and exciting software disciplines in computer science. I hope this book
makes complex aspects of operating systems easy to understand and avoids mak-
ing simple aspects boring. Good luck in your study of operating systems; I hope
you enjoy it as much as I do!

To the Instructor

Thank you for choosing this book as your aide in teaching undergraduates about

operating systems. Operating systems continues to be an essential computer sci- i

ence course, yet as I have taught it over many years, I have become increasingly
dissatisfied with the OS texts that are available. The types of textbooks available

do not fit the needs of my students. In my operating systems courses, I find that

the students often have a variety of backgrounds, although most will have taken

an introductory programming class, a data structures class, and perhaps a class |
on machine organization. At UC-Boulder, the operating systems course is also a |

popular class for electrical engineers and other majors in addition to computer
science students. Increasingly I find that some students will have found ways to
learn considerable amounts about system software by experimenting on their
own. Given such a varied background and base of knowledge, one of the largest
challenges in an operating systems class is to continue to encourage experimen-
tation with specific systems while developing an understanding and appreciation
for the fundamentals behind all operating systems.

The goal of this book is to meet that challenge. I advocate (and use) a bal-
anced approach to studying operating systems, combining a hands-on approach
with a study of theoretical issues and theory. Some reviewers took exception with
the amount of introductory material, which is presented in Chapters 1-4. In my
classes, 1 usually cover the material in Chapters 1, 3, and 4 very rapidly and rely

on the student to read the material to fill in gaps. I have found that it is really |

worth the time to lecture on the material in Chapter 2. Very few students have
used fork and exec (or their analogs in non-UNIX systems) before they take an
operating systems course. I have students write simple shells at the beginning of
the class so they can explore these basic concepts.

[start the detailed discussion of operating systems with device manage-
ment. At first, you may find this approach awkward, although it follows the tradi-
tional evolution of operating systems. A natural segue exists from the discussion
of interrupts in Chapter 4 to the discussion of device management in Chapter 5.
This approach also allows you to get your students involved in hands-on operat-

ing system exercises early in the term, since device drivers are the easiest part of '

‘ TO THE INSTRUCTOR

the operating system for students to learn enough about to begin modifying code
and writing new drivers. By addressing this first, you can prepare the student for
more difficult kernel exercises presented later in the term. Most important, it pro-
vides a simplified environment for introducing independent threads of execution
(in the hardware and the software), concurrency, and synchronization.

I have included two programming exercises at the end of Chapter 5 to
experiment with Linux device drivers. You may find that for some students the
second one is too complicated, since students must have a certain amount of
knowledge of kernel operation before they can really understand how to solve it.
Students also will require extra information from Linux sources, and perhaps
some highly specific information before they can really write the FIFO device
driver. Many instructors like to get to the details of process management as early

' in the course as possible. I believe that the device management chapter allows

you to introduce these critical concepts early. Then you can elaborate on this
material by considering the basic organization of process and resource manage-
ment, scheduling, synchronization, and deadlock.

Memory management is also important and another topic that instructors
usually want to get to as soon as possible. I choose to phase it in after process
management and then move to file management. Then I finish the essential
material with a discussion of protection and security, which is deferred until the

' student has had a chance to absorb the notions of process and various kinds of

resources (generic resources, memory, and files).

Some reviewers were concerned about the inclusion of distributed compu-
tation in Chapters 15-17. Any contemporary operating system must be built to
operate in (or be evolved to) distributed systems. All current research on operat-
ing systems is deeply influenced by distributed operating systems. In a one-
semester undergraduate course, I spend two to three weeks on this material,
although it is not covered at the same depth as the earlier material.

Because of the nature of commercial systems and networks, it would be
unforgivable to completely ignore these topics in an operating systems course. It

' is impossible to organize this material so that it meets every instructor’s desires.

The organization I use in my course is reflected in the book. However, there is no
particular harm caused by shuffling the material to suit your own desires.

If you do not like to talk about device management until after you talk about
file management, then skip Chapter 5 until after you have completed Chapter 13.

Iincluded several applied exercises that are challenging and relatively time
consuming, especially if attempted without considerable guidance by you or your
teaching assistant. These exercises are set off from the others in the chapters as
sections on Programming Practices and Exploring Linux code-reading problems.
Some reviewers felt these problems were too difficult to include without a warn-
ing. Most of the problems have been assigned previously in my own undergradu-
ate operating system class. I have found them to be important in providing an
opportunity for detailed hands-on experience in operating systems, even though

« they require extra effort by the instructor.

TO THE INSTRUCTOR °

Today, there is a wealth of information on operating systems available on |
the Internet through ftp sites and now on the World Wide Web that I would
encourage you to point your students towards. Because such sites change so fre-
quently I am maintaining a Web page at:

http://www.cs.colorado.edu/~nutt/osamp.html

where I keep a current set of links to relevant operating systems information. If
you have some material that should be shared with our readers, let me know; and
1 will add it to the page (email me at osamp@cs.colorado.edu). I also welcome
your questions, comments, suggestions, and advice (and I will even try to accept
your criticism in good humor :-)).

Many people have helped to edit and refine this book. First there are the stu-
dents at the University of Colorado, especially Sam Siewart, Scott Brandt, and Don
Lindsay. Addison-Wesley arranged to have additional students from other institu-
tions look at the manuscript: Eric F. Stuckey, Shawn Lauzon, Dan Dartman, and
Nick Tkach at Montana State University, and Jeffrey Ramin now at Berbee Infor-
mation Networks Corporation.

Next were the many people who spent hours looking at drafts or otherwise
suggesting ways to organize and improve it: Divy Agrawal (University of Califor-
nia at Santa Barbara), Vladamir Akis (California State University at Los Angeles),
Kasi Anantha (San Diego State University), Charles J. Antonelli (University of
Michigan), Lewis Barnett (University of Richmond), Lubomir F. Bic (University of
California, Irvine), Paosheng Chang (Lucent Technologies), Randy Chow (Univer-
sity of Florida), Wesley J. Chun, Carolyn J. Crouch (University of Minnesota,
Duluth), Peter G. Drexel (Plymouth State College), Joseph Faletti, Gary Harkin
(Montana State University), Dr. Sallie Henry (Virginia Tech), Mark A. Holliday
(Western Carolina University), Kevin Jeffay (University of North Carolina at Chapel
Hill), Phil Kearns (The College of William and Mary), Qiang Li (University of Santa
Clara), Darrell Long (University of California), Junsheng Long, Michael Lutz (Roch-
ester Institute of Technology), Carol McNamee (Sacremento State University),
Donald Miller (Arizona State University), Jim Mooney (West Virginia University),
Ethan V. Munson (University of Wisconsin - Milwaukee), Douglas Salane (John Jay
College), C.S. (James) Wong (San Francisco State University), and Salih Yurttas
(Texas A&M University). Thank you all for sharing your experience, insight, and
suggestions. 1

Finally, the editorial staff at Addison-Wesley and several freelance consult-
ants have been invaluable in helping me produce this book, especially Christine
Kulke, Angela Buenning, Rebecca Johnson, Dusty Bernard, Laura Michaels, Pat
Unubun, Dan Joraanstad, Nate McFadden, and most of all Carter Shanklin.

The book has benefited immensely by these collective efforts, but of course
the remaining errors are solely my responsibility.

Gary J. Nutt
Boulder, Colorado

Contents

CHAPTER 1 Introduction 1

Computers and Software 2
General Systems Software 3
Resource Abstraction 4
Resource Sharing 7
Computers without System Software 9

Operating System Strategies 9
Batch Systems 11
Timesharing Systems 15
Personal Computers and Workstations 18
Process Control and Real-time Systems 20
Networks 21
The Genesis of Modern Operating Systems 23
Summary 24

Exercises 25

CHAPTER 2 Using the Operating System 27

The Computational Model 28
File Resources 28
Other Resources 30
Processes 32

Initializing the Computational Environment 39
Executing Computations 40

Summary 44

Exercises 45

Programming Practice 45

CHAPTER 3

CHAPTER 4

CHAPTER 5

° CONTENTS

Operating Systems Organization

Factors in Operating System Design 48
Performance 48
Protection and Security 49
Correctness 50
Maintainability 50
Commercial Influence on Operating Systems 51
Standards and Open Systems 52

Basic Functions 53
Device Management 53
Process and Resource Management 54
Memory Management 54
File Management 55
Functional Organization 55

Basic Implementation Considerations 56
Processor Modes 57
Kernels 58

Requesting Services from the Operating Systems 59

Summary 60
Exercises 61

Computer Organization 63

The von Neumann Architecture 64

The Central Processing Unit 66
The Arithmetical-logical Unit 66
The Control Unit 67

Memory 71

Devices 73
General Device Characteristics 76
Device Controllers 76
Device Drivers 79

Interrupts 80

The Mode Bit Revisited: The Trap Instruction 84

Summary 85
Exercises 86
Programming Practice 89

Device Management 91

Device Management Approaches 92

47

CONTENTS °

1/0 System Organization 92
Direct I/0 with Polling 93
Interrupt-driven /0 95
Memory-mapped I/0 98
Direct Memory Access 101

Buffering 104

Device Drivers 107
The Device Driver Interface 108
CPU-device Interactions 110
I/0 Optimization 111

Some Device

Management Scenarios 115
Serial Communications 115
Sequentially Accessed Storage Devices 116
Randomly Accessed Devices 117

Summary 122

Exercises 124

Programming Practice 125

CHAPTER 6 Process Management 129

The Operating System View of a Process 130
Process Descriptors 131
Execution Monitoring and Control 133
Managing Resources 133
The Address Space 133
Generating the Address Space 134
Executing the Program 135
Maintaining Consistency in the Address Space 135
Managing Resources 137
Process State Diagram 138
The Resource Manager 139

Creating Processes 141
Threads Revisited 146

Process Structuring 147
Refining the Process Manager 148
Specializing Resource Allocation Strategies 149

Summary 150

Exercises 151

Exploring Linux 152
Programming Practice 152

CHAPTER 7

CHAPTER 8

CHAPTER 9

° CONTENTS

Scheduling 155

Scheduling Mechanisms 156
The Process Scheduler Organization 156
Voluntary CPU Sharing 159
Involuntary CPU Sharing 161

Strategy Selection 163

Nonpreemptive Strategies 168
First-Come-First-Served 168
Shortest Job Next 170
Priority Scheduling 172
Deadline Scheduling 173

Preemptive Strategies 174
Round Robin 176
Multiple-level Queues 180

Summary 181

Exercises 182

Exploring Linux 184
Programming Practice 184

Basic Synchronization Principles

Interacting Processes 188
Critical Sections 190
Deadlock 194

Coordinating Processes 196

Semaphores 199
Principles of Operation 200
Practical Considerations 210

Shared Memory Multiprocessors 214
Summary 215

Exercises 215

Programming Practice 220

High-level Synchronization 221

Alternative Synchronization Primitives 222
AND Synchronization 222
Events 224

Monitors 228
Principles of Operation 228
Condition Variables 230

187

CONTENTS @

Interprocess Communication 237
Mailboxes 238
Message Protocols 240
send and receive Operations 240
Explicitly Ordering Event Execution 248
Summary 250
Exercises 251
Programming Practice 252

CHAPTER 10 Deadlock 255

Background 256
Prevention 258
Avoidance 259
Detection and Recovery 259
Manual Deadlock Management 260

A System Deadlock Model 260
Prevention 264

Hold and Wait 264

Circular Wait 266

Allowing Preemption 268

Avoidance 269
The Banker’s Algorithm 271

Detection and Recovery 275
Serially Reusable Resources 275
Consumable Resources 281
General Resource Systems 287
Recovery 287

Summary 289
Exercises 290

CHAPTER 11 Memory Management 293

The Basics 294
Requirements on the Primary Memory 294
Mapping the Address Space to Primary Memory 296
Dynamic Memory for Data Structures 302

Memory Allocation 304
Fixed-partition Memory Strategies 305
Variable-partition Memory Strategies 307
Contemporary Allocation Strategies 311

Dynamic Address Relocation 312

@ CONTENTS

Runtime Bound Checking 317
Memory Manager Strategies 318
Swapping 319
Virtual Memory 322
Shared-memory Multiprocessors 325
Summary 328
Exercises 329
Programming Practice 331

CHAPTER 12 Virtual Memory 333

Address Translation 334
Address Space Mapping 334
Segmentation and Paging 336

Paging 337
Virtual Address Translation 339

Static Paging Algorithms 342
The Fetch Policy 343
Demand Paging Algorithms 346
Stack Algorithms 350
Implementation 352

Dynamic Paging Algorithms 354
The Working Set Algorithm 356
Implementation 359

Segmentation 362
Address Translation 363
Implementation 365

Summary 371

Exercises 372

CHAPTER 13 File Management 375

Files 376
Low-level Files 379
Structured Files 382
Database Management Systems 389
Multimedia Storage 390
Low-level File Implementations 390
open and close Operations 391
Block Management 394
Reading and Writing the Byte Stream 401

Supporting Other Storage Abstractions 406

CONTENTS °

Structured Sequential Files 406
Indexed Sequential Files 406
Database Management Systems 407
Multimedia Documents 407
Directories 408
Directory Structures 409
Directory Implementation 412
Opening a File in a Hierarchical Directory 415
Mounting Removable File Systems 415

Summary 416

Exercises 417

Exploring Linux 418
Programming Practice 418

CHAPTER 14 Protection and Security 421

Fundamentals 422
Policy and Mechanism 423
Implementing Policy and Mechanism 424
Authentication 425
Authorization 425
Encryption 426
Authentication 427
User Authentication 428
Authentication in Networks 429
Internal Access Authorization 432
The Basic Model for Resource Protection 433
Changing the Protection State 437
Implementing Internal Authorization 440
Protection Domains 440
Implementing the Access Matrix 442
Access Control Lists 443
Capabilities 445
Cryptography 447
Summary 449
Exercises 450

CHAPTER 15 Networks 453

From Computer Communications to Networks 454
Communication Subnetworks 455
Network Communication Protocols 456

