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Chapter 1

Introduction to Fatigue:
Fundamentals and Methodology

1.1. Introduction to the fatigue of materials
1.1.1. Brief history of fatigue: its technical and scientific importance

Experience shows that fracture of structures or machine parts during regular
operating conditions are most often due to fatigue. Structural integrity has always
been an obstacle to industrial development. Its consequences could be seen during
the development of mechanical industry in the 19" century. The industrial
revolution, particularly the development of rail transportation, was affected from the
start by a certain number of serious accidents, such as the one in Versailles, 1842,
where the rupture of an axle caused the death of 60 people [SMI 90]. This death toll
is close to that of the two Comet plane crashes that occurred in 1954.

It is known that fatigue damage costs several percent of the gross domestic
product of the engineering industry. For this reason, we can understand the fact that
articles and papers about this type of damage are ever increasing. Toth [TOT 01],
who recently checked the COMPENDEX data base, found about 10,000 articles on
this topic between 1988 and 1993, which comes to 2,000 articles a year.

According to Schiitz [SCH 96], Braithwaite [BRA 1854] introduced the term
“metal fatigue” in 1854. Despite this, Lemaitre [LEM 01] reckons that Poncelet

Chapter written by André PINEAU and Claude BATHIAS.



2 Fatigue of Materials and Structures

mentioned this term during an engineering lecture in Metz as early as 1839, and that
Rankine used it in 1843. To gain a better understanding of the work carried by
Poncelet and Rankine in this field, we can refer to Timoshenko’s work dealing with
the history of the strength of materials [TIM 53]. As a matter of fact, this term has
probably been in use for a long time. For instance, Stendhal used it in one of his
pieces “Memoirs of a tourist” published in 1838 [STE 1838]. On his way to
Civitavecchia, in Italy (where he had been appointed Consul), while crossing the
Loire river in La Charité one of the axles of his carriage broke. What he wrote is as
follows:

“La Charité — April 13. I was riding through the small town of La Charité, when,
as a reminder of the long thoughts I had in the morning about iron diseases, the axle
of my carriage suddenly broke down. I have to be blamed: I swore that if I ever had
my own carriage, | would get a nice Fourvoirie axle, with six mild steel rods, forged
under my own eyes... I checked the iron grain of my axle; it was larger as it has
apparently been used for a long time... .”

We should remember that in those times, and for many years during the 19th
century, people thought that iron “crystallized” due to mechanical vibrations. The
fact that Stendhal, who lived at the same time as Poncelet, already knew what
fatigue was, at least in this form, is not surprising. They both campaigned for
Napoleon in Russia in 1812 and we can assume that they would have discussed this
subject.

Excellent reviews on the history of fatigue have been written, some of them very
recently. We can for instance refer to the work of Schutz [SCH 96] which lists more
than 550 references, such as Toth [TOT 01], or Schijve [SCH 03].

It is worth noting that some works on this subject have recently been published:
— Bathias and Bailon [BAT 97];

— Bathias and Paris [BAT 05];

— Henaff and Morel [HEN 05];

— Murakami [MUR 02, MUR 03];

— Polak [POL 91];

— Reifsnider [REI 91];

— Schijve [SCH 01];

— Shaniavski [SHA 07]; and

— Suresh [SUR 98].
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Here we should mention two regularly published journals that explicitly refer to
the fatigue phenomenon: Fatigue and Fracture of Engineering Materials and
Structures and the International Journal of Fatigue. In addition to this, in other
countries scientific societies organize lectures and conferences on this subject, such
as the ASTM (American Society for Testing and Materials) in the USA and the
SF2M (French Society of Metallurgy and Materials) in France.

Year Event

1842 Meudon railway accident
1858 First publication by Wohler

Wohler experiments on smooth and notched axles. Bending
and torsion tests — Investigation on the effect mean stress

1860-70

- 1881 | Study by Bauschinger which initiated low-cycle fatigue

1910 Basquin law

1913 Stress distribution within notches (Inglis)

1920 Energy balance regarding the propagation of a crack (Griffith)

1930 Stress concentration factor and endurance limit (Peterson)

1937 Neuber concept applied to notches

1939 Statistical approach Weibull law

1945 Miner concept for fatigue damage accumulation

1953-54 | Low cycle fatigue. Manson — Coffin law

1954 Comet aircrafts accidents

1956 Introduction of strain energy released rate (Irwin)

1960 Servohydraulic machines

1961 Paris law

1968 Introdcution of effective stress intensity factor (Elber)
1988 Aloha B737 accident

1989 DC 10 Sioux City accident

1996 Pensacola accident

1998 ICE. Eschede railway accident

2006 Los Angeles B767 accident

Table 1.1. 4 few stages and main events regarding the history of the fatigue phenomenon

Some memorable stages and events that have marked the history of fatigue are
highlighted in Table 1.1. As mentioned earlier, this type of damage has clearly been
of great importance during the development of rail transportation. The various
ruptures that Wohler observed in Germany led him to undertake a systematic study of
this type of damage.
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Along with trains and many other mechanical structures, aircraft were also
readily affected by the fatigue phenomenon. The first serious accidents that occurred
are those involving two Comet aircraft in 1954. A more recent example was the
Aloha accident in 1988, which involved a Boeing 737. The damage was really
serious, as we can see in Figure 1.1. This accident was caused by the formation of
cracks due to fatigue and corrosion in the assembly rivets area within the fuselage.
As a result, numerous studies have been carried out regarding the issue of multiple
site damage.

Figure 1.1. The Aloha Airlines Boeing 737at Honolulu international airport, Hawaii,
following the accident on April 28, 1988

Another example concerns the MacDonald Douglas DC 10 crash, which
occurred in Sioux City in lowa in 1989 (see Figure 1.2). The explosion of one of the
engines led to this tragic accident. Even more recent was the Pensacola crash, when
one of the engines broke apart due to cracking initiation caused by a drilling defect
within a fan disk (see Figure 1.3).

These three examples from the aeronautical industry should not lead people to
think that aircrafts as a means of transportation are dangerous and the only means
affected by fatigue phenomenon. If we calculate the distance to passenger ratio,
flying remains the safest means of transport. Nevertheless, due to its rapid
development and despite the work being done on its design, manufacturing and
maintenance, we can predict that in about 10 years’ time a major aircraft accident is
likely to occur every week (see Figure 1.4). Let us keep in mind that human error is
the main cause of accidents involving aircraft. Accidents caused by defects in the
materials are still occurring in spite of improved manufacturing processes.
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Figure 1.2. DC 10 aircraft crash. Part of a detached engine.
Sioux City Airport, July 19, 1989

Figure 1.3. Pensacola Crash (Florida, USA), July 6, 1996, was due to
a failure during thetake off of a Delta Airlines MD-88 aircraft

Fatigue also affects many other fields of transport, as shown in Figure 1.5 where
cylinder heads of diesel engines subjected to increasing thermo-mechanical loading
can break due to thermal and mechanical fatigue cracking if their design is wrong
[SAL 07].
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Figure 1.4. Statistical study of the evolution of air traffic and of the number
of crashes (MANHIRP, 2001, see also 1001crash.com)

Figure 1.5. Cracking within the cylinder head of a diesel engine [SAL 07]

1.1.2. Definitions

Fatigue or fatigue damage refers to the modification of the properties of
materials due to the application of stress cycles whose repetition can lead to fracture.

Uniaxial loading is defined as the amplitude of the maximum stress during a
cycle Opay. The stress ratio R is the ratio between the minimum stress O, and the



