


o4 2]

£

RELATIVITY:
THE SPECIAL THEORY

BY

J. L.SYNGE

School of Theoretical Physics
Dublin I nstitute for Advanced Studies

Von Stund an sollen Raum fiir sich und
Zeit fiir sich vollig zu Schatten herabsinken
und nur noch eine Art Union der beiden
soll Selbststindigkeit bewahren.

H. Minkowski, Raum und Zeit
[Physikalische Zeitschrift 10 (1909) 104]

1956



NOTATION

Latin suffixes take the values 1, 2, 3, 4 and Greek suffixes the range
1, 2, 3, with summation over the appropriate range of values in the
case of a repeated suffix. Any exceptiuns to this rule are explicitly
noted.

Real coordinates are written with superscripts, x#". Coordinates with
an imaginary time are written with subscripts, x,, with x, = ict.

Partial-derivatives are often indicated by a comma (f, = affox").
Covariant derivatives are indicated by a vertical stroke, f,,.

The signs of the components of the fundamental tensor g,, are
chosen so that (for real coordinates) the diagonal form is (1, 1, 1, — 1)
and not (— 1, — 1, — 1, 1).

SYNGE . RELATIVITY

ERRATA

p. 65, Fig, 3: for "nul"“éad “null”.

p.- 102: for the three lines following eq. (158), substitute "‘all such
transformations forming a six-parameter group of projective transfor-
mations of Euclidean 3-space into itself, equivalent to the six-para-
meter group of Lorentz transformations A of space-time”.

p- 231,line 2: read "'in the form”’.

p. 330, line 6 from end: for sYGNE read SYNGE.



PREFACE

This book originated in the notes of lectures given over a number of
years in graduate courses at the University of Toronto and elsewhere.
The basic idea is to present the essentials of relativity from the
Minkowskian point of view, that is, in terms of the geometry of space-
time. This geometrical approach is used to some extent in all expo-
sitions of relativity, but I have emphasised it more than is customary,
because it is to me (and I think to many others) the key which unlocks
many mysteries. My ambition has been to make space-time a real
workshop for physicists, and not a museum visited occasionally with a
feeling of awe.

As originally planned, the book was to cever both the special and
general theories of relativity. But as it was being written, the charm of
the special theory so worked on me that I found it impossible to
confine it to the required limits and, in the end, the general theory had .

.to be omitted. This is mot wholly regrettable, because the special
theory is by far the more firmly embedded in modern physics and
should not be overshadowed by the general thesry, as tends to be the
case. However, I have left in Chapter I a foundation strong enough to
support both the special and general theories.

To understand a subject, one must tear it apart and reconstruct it in
a form intellectually satisfying to omeself, and that (in view of the
differences between individual minds) is likely to be different from the
original form. This new synthesis is of course not an individual effort ;
it is the result of much reading and of countless informal discussions,
but for it one must in the end take individual responsibility. Therefore
I apologise, if apology is necessary, for departing from certain tra-
ditional approaches which seemed to me unclear, and for insisting that
the time has come in relativity to abandon an historical order and to
present the subject as a completed whole, completed, that is, in its -
essentiais. In this age of specialisation, history is best left to historians.

I have tried to include most of the famous relativistic results and to
develope those relativistic formulae which may be regarded as basic,
but, having done so, I have felt at liberty to go a little further along
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unfamiliar paths where the conclusions may, or may not, be physically
significant. In every case I hope that I have made clear the as-
sumptions from which the conclusions spring. In this category I may
mention the reconstruction in relativistic form of the discrete system
of Newtonian mechanics with action and reaction between its parti-
cles (Chapter VII), leading to a statistical concept of the energy tensor
(Chapter VIII); the elastic collisions of particles (point-particles, that
is) with conservation of angular momentum, leading to a surprising
multiple determinacy and some rather intricate algebra (Chapter
VII); and the models of uncharged “particles” of finite energy
constructed out of singularity-free solutions of Maxwell’s equations in
vacuo, and model photons constructed according to the same plan
(Chapter IX).

I would like to express my debt to the late Dr. L. Silberstein whose
lectures at the University of Toronto over thirty years ago started my
interest in relativity, to colleagues past and present, in particular
Professors L. Infeld, C. Lanczos and E. Schrédinger, for many friendly
discussions, to Professor N. L. Balazs who read a considerable portion
of the manuscript and was fruitful in suggestions, and to Dr. G. H. F.
Gardner who supplied an essential and rather subtle mathematical
argument (see p. 239). I am most grateful to Dr. F. A. E. Pirani for his
painstaking collaboration in proof-reading and checking formulae, and
for suggestions which have unkinked the exposition at many points.

Dublin, June 1955 J.E. S,
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CHAPTERII

THE SPACE-TIME CONTINUUM AND THE
SEPARATION BETWEEN EVENTS

§ 1. CONCEPTS

A scientific theory may be divided into three parts: (2) foundations,
(b) accepted dogma, (c) excursions. The foundations are axioms,
principles or laws (e.g. Newton’s laws of motion or the first and second
Jaws of thermodynamics). The accepted dogma consists of deductions
from the foundations confirmed by observation and experiment,
linking reason with nature in a satisfying way (e.g. Newtonian me-
chanics as it stood before relativity was thought of). The excursions
wander out of the domain of accepted dogma, sometimes arousing in
cautious minds a feeling that they have more imagination than solid
fact in them (e.g. Maxwell’s electromagnetic theory of light at the time
when he put it forward — all excursions are not so successfull).
A scientific theory is a living thing which grows and changes; fruitful
excursions extend the body of accepted dogma and critical scrutiny of
the foundations clarifies and sometimes modifies them.

If someone, otherwise well equipped in knowledge of mathematics
and physics, wants to understand the theory of relativity, by what
door is he to enter in? As the result of what process is he to find himself
comfortably at home in the accepted dogma of relativity, capable of
appreciating the foundations critically and able to discuss the ex-
cursions of others and to make his own?

Such questions are of course not pertinent to relativity only —
they apply to any branch of theoretical physics, or indeed to any
branch of science. But they are particularly difficult to answer satis-
factorily in the cases of relativity and quantum mechanics, not merely
because these subjects are comparatively- young, but because they
both uproot concepts usually accepted without question.

The ancient Greeks had their answer. The door by which they
entered a subject was a set of axioms; granted these, all one had to do

Synge 1



2 SPACE-TIME CONTINUUM [cH. 1, § 1

was to follow the processes of logical thought. To the works of Euclid
and Archimedes, written in this axiomatic spirit, modern science owes
its being. But it is not as simple as it looks. Axioms, we now realise, are
not the self-evident truths they were long supposed to be, but rather
the rules of a game, the pieces of which are elements or concepts which
remain and must ever remain undefined because there is nothing in
terms of which to define them. This was brought to light by the re-
searches of Hilbert into the foundations of geometry at the end of the
nineteenth century, and the knowledge that any theory with a claim
to logical structure must start with undefined elements and unproved
propositions is slowly permeating through science.

In fact, although it seems most natural to start with the foundations
and build on them, we now realise that the foundations of a theory are
actually the most elusive and confusing part of it. Anyone who tries
to put a physical theory on an impeccable axiomatic basis soon realises
that he has undertaken a major task, absorbing all his energy and
leaving none for the body of the theory in which his real interest lies.
The axiomatisation of physics is of great interest, but it is a job for the
specialist in axiomatics, and the fruits of his labour are likely to be
enjoyed rather by fellow specialists than by theoretical physicists at
large. In brief, axiomatics do not provide the door we are seeking.

In modern works on theoretical physics axiomatisation has been
largely abandoned. Instead, the entry to a new subject is by what may
be called the “‘cuckoo-process”. The eggs are laid, not on the bare
ground to be hatched in the clear light of Greek logic, but in the nest of
another bird, where they are warmed by the body of a foster mother,
which, in the case of relativity, is the Newtonian physics of the nine-
teenth century. The student is first thoroughly indoctrinated with
Newtonian physics, and he accepts its concepts as true to physical
reality. Then, step by step, the concepts are modified, until finally he
bites off the head of his foster mother and flies from the nest a full-
fledged relativitist.

This cuckoo-process follows the true order of historical development
in science and it has the advantage that at every stage of the transfor-
mation the ledrner has the comforting support of familiar surroundings.
As each support falls away, it is replaced by another, constructed to the
new pattern. But it is confusing. The concepts of Newtonian physics
interlock with one another (e.g. force, acceleration, inertial mass and
gravitational mass), and until one has finally reviewed all Newtonian
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concepts, there is always present a suspicion that the same word is
being used with meanings which differ with the context.

The plan adopted in this book is a compromise. Formal axiomatics
are avoided, but a serious effort is made to state the assumptions
with enough clarity to show that relativity is essentially a logical
structure for which any interested logician might seek a system of
axioms if he wanted to. The appeal to undefined elements, essential
in an axiomatic treatment but repellent to most physicists as an
unnecessary mystification, is avoided by taking over concepts from
Newtonian physics and setting them in a new background. There is,
of course, a danger in this, for even in Newtonian physics different
people have slightly different ways of looking at concepts, and so the
theory of relativity, created in the mind of the individual, may have a
slightly subjective character depending on who the individual is. This
is unavoidable; only by the give-and-take of scientific conversation can
anyone be sure that his concepts are the same as the concepts of others,
or, if they are not the same, find out how they differ.

It might seem that this is the cuckoo-process over again, but it is
not. We shall from the first turn a cold and sceptical eye on Newtonian
physics, never admitting a bunch of interlocking Newtonian concepts
but only concepts one at a time, alone and disinfected.

Let us now get to work. We start with a tabula rasa, a clean sheet, a
mind in a state of intellectual nudity.

Into this void we admit at once the whole body of pure mathematics,
or at least those portions of pure mathematics which we may have
occasion to use later. Applied mathematics on the other hand is ex-
cluded, for almost all applied mathematics deals with Newtonian
physics, and the words used in it evoke Newtonian concepts and these
we are prepared to admit only singly and under scrutiny.

This embargo on applied mathematics is serious, for it excludes the
dynamics of particles and rigid bodies, celestial mechanics, Lagrangian
and Hamiltonian methods, hydrodynamics, elasticity and electro-
dynamics. The trouble with these subjects is that they all involve the
Newtonian concept of #ime, and that, as we shall see in due course, is
one of those Newtonian concepts which we shall #ot take over into
relativity. If the subjects listed above are to appear in the theory of
relativity, they must appear in a revised form. However the student of
relativity has not wasted his time in the study of Newtonian subjects,
for in relativity we frequently seek contact with Newtonian physics
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in certain limiting cases, and such contacts are understandable only to
one familiar with Newtonian theories.

The subject of geometry deserves special mention. Is it pure mathe-
matics or applied mathematics? There is considerable confusion on this
question, because the word is used to cover two entirely different things.
In so far as it is axiomatic (logical deduction from axioms dealing with
undefined elements), it is pure mathematics and as such admissible into
our relativistic scheme, provided we do not subconsciously define the
undefined elements physically and accept the axioms concerning them.
In so far as geometry deals with the form of actual things and their
measurement, it is definitely applied mathematics, and as such
excluded from our relativistic scheme, at least until such time as we
are ready to consider the possibility of admitting it.

There is another way of looking at this question of geometry. The

positive integers, which correspond to the primitive physical operation
of counting, form the basis of a considerable portion of mathematics.
From them we derive negative numbers, irrational numbers and
complex numbers, and hence the body of mathematical analysis.
Relativity is not so revolutionary as to question the validity of
counting, and in fact it accepts all mathematics based on counting.
Thus the relationship of geometry to relativity is most satisfactorily
~established when geometry is regarded analytically, a “‘point’ being
nothing but a set of numbers (its coordinates) and a “line” a set of
points. This is a most fruitful way to look at geometry, and we shall
make extensive use of it. It is only when geometry purports to deal
with “physical space” that we must view it with extreme caution. This
does not mean that the geometry of physical space will not be discuss-
ed, but only that we reserve the right to discuss it at our own time and
in our own terms.

For historical accounts of the theory of relativity, the reader may
consult DuGaAs [1950] and WHITTAKER [1953], or for more mathemati-
cal detail, PAuLI [1920].! Out of the work of Lorentz and Poincaré
the special theory of relativity emerged, EINSTEIN [1905] clearing up
philosophical difficulties by destroying the concepts of ether and
absolute simultaneity and MINKowsK1 [1909] giving the theory a clear
mathematical form in terms of the geometry of space-time. After some
tentative approaches, the general theory of relativity (the new theory

! For these and other references, see p. 435.
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of gravitation) took final shape in 1915-1916 (EINSTEIN [1915, 1916])%.

In the present chapter historical order is abandoned and a basis laid
down wide enough to support both the special and the general theories.
This avoids a cuckoo-process by which the special theory is first
developed and later eaten up by the general theory; if this delays a
little the reader’s contact with the details of relativity, it will, it is
hoped, save him from headaches later on.

We shall now start to take over Newtonian concepts into relativity,
beginning with the concepts of event and particle.

§ 2. EVENTS AND PARTICLES

The word event does not occur frequently in Newtonian physics, but
this is accidental, because the concept is quite:clear. Anything that
happens is an event, but (just as in geometry we sharpen the concept of
a point) we sharpen the concept of an event to mean an occurrence
which takes up no room and has no duration. To emphasise this
sharpening we may call it a point-event, but it is unnecessary to do so
because we shall always use the word event in this sharpened sense.

To stimulate the imagination we may think of an event as an
explosion or collision, but this dramatic or catastrophic association is
not essential. Any occurrence, sharpened as aforesaid, is an event, and
we can of course imagine possible events as well as those ‘which we
think of as actually occurring. We shall presently consider the totality
of all possible events (space-time).

The concept of a material particle also is taken over from Newtonian
physics. We are familiar with the way in which it appears in physical
theory — a moving point with a number (mass) associated with it, and
perhaps a second number (electric charge). This concept we accept in
relativity, with one slight reservation ; perhaps the mass is not constant.
We exercise the same discrimination as in Newtonian physics regarding
the circumstances under which a real piece of matter may be treated as
a partlcle it may on occasion be an electron, an atom, a blﬂtard ball,
a planet, a star, or even a nebula.

It is convenient to introduce also the particle of light or photon, the
properties of which will be discussed later. For the moment we think
of it as a moving point. There is nothing un-Newtonian in the idea of a
small parcel of light.

! English translations of a number of fundamental papers are coritained in
LORENTZ [1923].
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We have now taken over from Newtonian physics the concepts of
event and particle (material particle and photon). They are linked
together by the fact that the history of a particle is a continuous sequence
of events.

§ 3. SPACE-TIME

In Newtonian physics an event may be identified by four numbers
(%, 9, 2, t), where (x, y, z) are the rectangular Cartesian coordinates of
the place where it occurs and ¢ the time at which it occurs. But we do
not have to use these numbers. If we define (X,Y,Z,T) as four
functions of (x, y, 2, ¢), then the values of (X, Y, Z, T) serve to identify
an event. The essential thing is that an event needs four numbers to
identify it, and for that reason we say that in Newtonian physics the
totality of all possible events form a four-dimensional continuum.

This italicised statement we take over into relativity, without
necessarily taking over the chain of thought leading up to it. We are
not yet ready to discuss whether the concepts of rectangular Cartesian
coordinates (¥, y, z) and time ¢ are acceptable in relativity. Actually,
we shall accept them later with important reservations. For the present
let us not think about them, but accept as a fundamental hypothesis of
relativity the statement that the fotality of all possible events form a
four-dimensional continuum. This continuum we call space-time ; we are
not at all in a position to remove the hyphen and speak of space and
time separately.

In regard to space-time, the emphasis is on the word four. It is four-
dimensional, not three-dimensional or five-dimensional. In saying that
it is four-dimensional, we mean that an event is identified by four
numbers, say (¥, 22, 23, x%), which numbers we call the coordinates of
the event, or. space-time coordinates if we want to be emphatic.

It is well at this point to interject a cautionary remark which does
not affect the general line of thought. In Newtonian physics the space-
time of all possible events is covered once over by the coordinates
(%, ¥, z, t), each of these four coordinates ranging from — oo to + oo.
There is in fact a one-to-one correspondence between events and
tetrads of numbers (x, v, z, #). It is not asserted that the space-time of
relativity is covered once over by the coordinates (x4, 28, 28, 2%
ranging from — co to + oo. It is enough to think that a portion of
space-time is covered once over by these coordinates with suitable
ranges. To cover the whole of space-time it may be necessary to use



