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Preface

This book began when David Jacobson wrote the first draft of Chapters 1, 3, and 4
and Jason Speyer wrote Chapters 2, 5, and 6. Since then the book has constantly
evolved by modification of those chapters as we interacted with colleagues and stu-
dents. We owe much to them for this polished version. The objective of the book is to
make optimal control theory accessible to a large class of engineers and scientists who
are not mathematicians, although they have a basic mathematical background, but
who need to understand and want to appreciate the sophisticated material associated
with optimal control theory. Therefore, the material is presented using elementary
mathematics, which is sufficient to treat and understand in a rigorous way the issues
underlying the limited class of control problems in this text. Furthermore, although
many topics that build on this foundation are covered briefly, such as inequality con-
straints, the singular control problem, and advanced numerical methods, the founda-
tion laid here should be adequate for reading the rich literature on these subjects.

We would like to thank our many students whose input over the years has been
incorporated into this final draft. Our colleagues also have been very influential in
the approach we have taken. In particular, we have spent many hours discussing
the concepts of optimal control theory with Professor David Hull. Special thanks are
extended to Professor David Chichka, who contributed some interesting examples and
numerical methods, and Professor Moshe Idan, whose careful and critical reading of
the manuscript has led to a much-improved final draft. Finally, the first author must
express his gratitude to Professor Bryson, a pioneer in the development of the theory,
numerical methods, and application of optimal control theory as well as a teacher,
mentor, and dear friend.
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CHAPTER 1

Introduction

The operation of many physical processes can be enhanced if more efficient operation
can be determined. Such systems as aircraft, chemical processes, and economies have
at the disposal of an operator certain controls which can be modulated to enhance
some desired property of the system. For example, in commercial aviation, the best
fuel usage at cruise is an important consideration in an airline’s profitability. Full
employment and growth of the gross domestic product are measures of economic
system performance; these may be enhanced by proper modulation of such controls
as the change in discount rate determined by the Federal Reserve Board or changes

in the tax codes devised by Congress.

The essential features of such systems as addressed here are dynamic systems,
available controls, measures of system performance, and constraints under which a
system must operate. Models of the dynamic system are described by a set of first-
order coupled nonlinear differential equations representing the propagation of the
state variables as a function of the independent variable, say, time. The state vector
may be composed of position, velocity, and acceleration. This motion is influenced
by the inclusion of a control vector. For example, the throttle setting and the aerody-
namic surfaces influence the motion of the aircraft. The performance criterion which

establishes the effectiveness of the control process on the dynamical system can take
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many forms. For an aircraft, desired performance might be efficient fuel cruise (fuel
per range), endurance (fuel per time), or time to a given altitude. The performance
criterion is to be optimized subject to the constraints imposed by the system dynam-
ics and other constraints. An important class of constraints are those imposed at the
termination of the path. For example, the path of an aircraft may terminate in min-
imum time at a given altitude and velocity. Furthermore, path constraints that are
functions of the controls or the states or are functions of both the state and control
vectors may be imposed. Force constraints or maximum-altitude constraints may be
imposed for practical implementation.

In this chapter, a simple dynamic example is given to illustrate some of the
concepts that are described in later chapters. These concepts as well as the optimiza-
tion concepts for the following chapters are described using elementary mathematical
ideas. The objective is to develop a mathematical structure which can be justified
rigorously using elementary concepts. If more complex or sophisticated ideas are re-
quired, the reader will be directed to appropriate references. Therefore, the treatment
here is not the most general but does cover a large class of optimization problems of

practical concern.

1.1 Control Example

A control example establishes the notion of control and how it can be manipulated

to satisfy given goals. Consider the forced harmonic oscillator described as
Z+zx=u, z(0), #(0) given, (1.1)

where z is the position. The overdot denotes time differentiation; that is, & is dz/dt.

This second-order linear differential equation can be rewritten as two first-order dif-
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ferential equations by identifying z; = z and x = . Then

iy = o, z1(0) given, (1.2)

Ty = —x1+u, x2(0) given, (1.3)

or

HEEDFINH -

Suppose it is desirable to find a control which drives x; and z5 to the origin from
arbitrary initial conditions. Since system (1.4) is controllable (general comments on
this issue can be found in [8]), there are many ways that this system can be driven
to the origin. For example, suppose the control is proportional to the velocity such
as u = —Kxz9, K > 0, is a constant. Then, asymptotically the position and velocity
converge to zero as t — 0Q.

Note that the system converges for any positive value of K. It might logically
be asked if there is a best value of K. This in turn requires some definition for
“best.” There is a large number of possible criteria. Some common objectives are to
minimize the time needed to reach the desired state or to minimize the effort it takes.
A criterion that allows the engineer to balance the amount of error against the effort
expended is often useful. One particular formulation of this trade-off is the quadratic

performance index, specialized here to

tr
Jy = tlim (@122 + agx? + u?)dt, (1.5)
,f—‘?OO 0
where a; > 0 and a; > 0, and u = —Kux, is substituted into the performance

criterion. The constant parameter K is to be determined such that the cost criterion

is minimized subject to the functional form of Equation (1.4).
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We will not solve this problem here. In Chapter 2, the parameter minimization
problem is introduced to develop some of the basic concepts that are used in the
solution. However, a point to note is that the control u does not have to be chosen
a priori, but the best functional form will be produced by the optimization process.
That is, the process will (usually) produce a control that is expressed as a function
of the state of the system rather than an explicit function of time. This is especially
true for the quadratic performance index subject to a linear dynamical system (see
Chapters 5 and 6).

Other performance measures are of interest. For example, minimum time has
been mentioned for where the desired final state was the origin. For this problem to
make sense, the control must be limited in some way; otherwise, infinite effort would
be expended and the origin reached in zero time. In the quadratic performance index
in (1.5), the limitation came from penalizing the use of control (the term u? inside the
integral). Another possibility is to explicitly bound the control. This could represent
some physical limit, such as a maximum throttle setting or limits to steering.

Here, for illustration, the control variable is bounded as
lu] < 1. (1.6)

In later chapters it is shown that the best solution often lies on its bounds. To
produce some notion of the motion of the state variables (1, z2) over time, note that
Equations (1.2) and (1.3) can be combined by eliminating time as

dr,/dt T
dry/dt  (—x1 + u)

= (—.1'1 + U)dl'l - Cl'gdl'z. (17)
Assuming u is a constant, both sides can be integrated to get

(z1 — u)* + 25 = R?, (1.8)
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Figure 1.1: Control-constrained optimization example.

which translates to a series of concentric circles for any specific value of the control.
For u = 1 and u = —1, the series of concentric circles are as shown in Figure 1.1
There are many possible paths that drive the initial states (z1(0), z2(0)) to the origin.
Starting with w = 1 at some arbitrary (z;(0),z2(0)), the path proceeds to point A
or B. From A or B the control changes, u = —1 until point C or D is intercepted.
From these points using u = 41, the origin is obtained. Neither of these paths
starting from the initial conditions is a minimum time path, although starting from
point B, the resulting paths are minimum time. The methodology for determining

the optimal time paths is given in Chapter 4.

1.2 General Optimal Control Problem

The general form of the optimal control problems we consider begins with a first-order,

likely nonlinear, dynamical system of equations as

T = f(z,u,t), x(ty) = o, (1.9)



