

SECOND EDITION

THE 8051 MICROCONTROLLER

|. Scott MacKenzie

University of Guelph
Guelph, Ontario

Prentice Hall, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in- Publication Data
MacKenzie, 1. Scott
The 8051 microcontroller / I. Scott MacKenzie—2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-02-373660-7
1. Intel 8051 (Computer)—Programming 2. Digital control systems.

I. Title. I1. Title: Eight thousand fifty-one
QA76.8.127M23 1995
004.165—--dc20 94-8278

CIP

Cover Photo: Lester Lefkowitz/Tony Stone Worldwide
Editor: Charles E. Stewart, Jr.

Production Editor: Stephen C. Robb

Cover Designer: Julia Z. Van Hook

Production Manager: Pamela D. Bennett

© 1995 by Prentice-Hall, Inc.
Simon & Schuster Company / A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America
109876543

ISBN 0-02-373bkL0O-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PREFACE

This book examines the hardware and software features of the MCS-51 family of micro-
controllers. The intended audience is college or university students of electronics or
computer technology, electrical or computer engineering, or practicing technicians or
engineers interested in learning about microcontrollers

The means to effectively fulfill that audience’s informational needs were tested
and refined in the development of this book. In its prototype form, The 8051 Microcon-
troller has been the basis of a fifth semester course for college students in computer en-
gineering. As detailed in Chapter 10, students build an 8051 single-board computer as
part of this course. That computer, in turn, has been used as the target system for a final,
sixth semester “project” course in which students design, implement, and document a
“product” controlled by the 8051 microcontroller and incorporating original software
and hardware.

Since the 8051—Ilike all microcontrollers—contains a high degree of functional-
ity, the book emphasizes architecture and programming rather than electrical details.
The software topics are delivered in the context of Intel’s assembler (ASMS51) and
linker/locator (RL51).

It is my view that courses on microprocessors or microcontrollers are inherently
more difficult to deliver than courses in, for example, digital systems, because a linear
sequence of topics is hard to devise. The very first program that is demonstrated to stu-
dents brings with it significant assumptions, such as a knowledge of the CPU’s program-
ming model and addressing modes, the distinction between an address and the content of
an address, and so on. For this reason, a course based on this book should not attempt to
follow strictly the sequence presented. Chapter 1 is a good starting point, however. It
serves as a general introduction to microcontrollers, with particular emphasis on the dis-
tinctions between microcontrollers and microprocessors.

Chapter 2 introduces the hardware architecture of the 8051 microcontroller, and its
counterparts that form the MCS-51 family. Concise examples are presented using short
sequences of instructions. Instructors should be prepared at this point to introduce, in
parallel, topics from Chapters 3 and 7 and Appendices A and C to support the requisite
software knowledge in these examples. Appendix A is particularly valuable, since it con-
tains in a single figure the entire 8051 instruction set.

Chapter 3 introduces the instruction set, beginning with definitions of the 8051’s
addressing modes. The instruction set has convenient categories of instructions (data
transfer, branch, etc.) which facilitate a step-wise presentation. Numerous brief exam-
ples demonstrate each addressing mode and each type of instruction.

Chapters 4, 5, and 6 progress through the 8051°s on-chip features, beginning with
the timers, advancing to the serial port (which requires a timer as a baud rate generator),

PREFACE

and concluding with interrupts. The examples in these chapters are longer and more
complex than those presented earlier. Instructors are wise not to rush into these chapters:
it is essential that students gain solid understanding of the 8051°s hardware architecture
and instruction set before advancing to these topics.

Many of the topics in Chapter 7 will be covered, by necessity, in progressing
through the first six chapters. Nevertheless, this chapter is perhaps the most important
for developing in students the potential to undertake large-scale projects. Advanced top-
ics such as assemble-time expression evaluation, modular programming, linking and lo-
cating, and macro programming will be a significant challenge for many students. At this
point the importance of hands-on experience cannot be over-emphasized. Students
should be encouraged to experiment by entering the examples in the chapter into the
computer and observing the output and error messages provided by ASM51, RL51, and
the object-to-hex conversion utility (OH).

Some advanced topics relating to programming methods, style, and the develop-
ment environment are presented in Chapters 8 and 9. These chapters address larger,
more conceptual topics important in professional development environments.

Chapter 10 presents several design examples incorporating selected hardware with
supporting software. The software is fully annotated and is the real focus in these exam-
ples. The second edition includes two additional interfaces; a digital-to-analog output in-
terface using an MC1408 8-bit DAC, and an analog-to-digital input interface using an
ADCO0804 8-bit ADC. One of the designs in Chapter 10 is the SBC-51—the 8051 single-
board computer. The SBC-51 can form the basis of a course on the 8051 microcontroller.
A short monitor program is included (see Appendix G) which is sufficient to get “up and
running.” A development environment also requires a host computer which doubles as a
dumb terminal for controlling the SBC-51 after programs have been downloaded for ex-
ecution.

Many dozens of students have wire-wrapped prototype versions of the SBC-51
during the years that I have taught 8051-based courses to computer engineering students.
Shortly after the release of the first edition of this text, URDA, Inc. (Pittsburgh, Pennsyl-
vania) began manufacturing and marketing a PC-board version of the SBC-51. This has
proven to be a cost-effective solution to implementing a complete lecture-plus-lab pack-
age for teaching the 8051 microcontroller to technology students. Contact URDA at
1-800-338-0517 for more information.

Finally, each chapter contains questions further exploring the concepts presented.
This new edition includes 128 end-of-chapter questions—almost double the number in
the first edition. A solutions manual is available to instructors from the publisher.

The book makes extensive use of, and builds on, Intel’s literature on the MCS-51
devices. In particular, Appendix C contains the definitions of all 8051 instructions and
Appendix E contains the 8051 data sheet. Intel’s cooperation is gratefully acknowl-
edged. I also thank the following persons who reviewed the manuscript and offered in-
valuable comments, criticism, and suggestions: Antony Alumkal, Austin Community
College; Omer Farook, Purdue University—Calumet; David Jones, Lenoir Community
College; Roy Seigel, DeVry Institute; and Chandra Sekhar, Purdue University—
Calumet.

I. Scott MacKenzie

1

INTRODUCTION TO MICROCONTROLLERS

1.1 Introduction 1

1.2 Terminology 3

1.3 The Central Processing Unit 3

1.4 Semiconductor Memory: RAM and ROM 5
1.5 The Buses: Address, Data, and Control 6
1.6 Input/Output Devices 7

1.6.1 Mass Storage Devices 7
1.6.2 Human Interface Devices 7
1.6.3 Control/Monitor Devices 7

1.7 Programs: Big and Small 8
1.8 Micros, Minis, and Mainframes 9
1.9 Microprocessors vs. Microcontrollers 10

1.9.1 Hardware Architecture 10
1.9.2 Applications 10
1.9.3 Instruction Set Features 11

1.10 New Concepts 12
1.11 Gains and Losses: A Design Example 13
Problems 15

HARDWARE SUMMARY
2.1 MCS-51™ Family Overview 17
2.2 Once Around the Pins 19

2.2.1 Port0 20
2.22 Portl 20

CONTENTS

17

Vi

CONTENTS

3

223
224
2:2.5
2.2.6
2.2.7
228
229
2.2.10

Port2 20

Port3 20

PSEN (Program Store Enable) 21
ALE (Address Latch Enable) 21
EA (External Access) 21

RST (Reset) 21

On-chip Oscillator Inputs 21
Power Connections 22

2.3 1/0 Port Structure 22
2.4 Memory Organization 22

2.4.1
242
243

General Purpose RAM 23
Bit-addressable RAM 24
Register Banks 26

2.5 Special Function Registers 26

2.5.1
252
2.5.3
254
2.5.5
2.5.6
2.5.7
2.9.8
2.5.9

Program Status Word 27
B Register 28

Stack Pointer 29

Data Pointer 29

Port Registers 29

Timer Registers 30

Serial Port Registers 30
Interrupt Registers 31
Power Control Register 31

2.6 External Memory 32

2.6.1
2.6.2
2.6.3

2.6.4 Overlapping the External Code and Data Spaces

Accessing External Code Memory 33
Accessing External Data Memory 33
Address Decoding 36

2.7 8032/8052 Enhancements 37
2.8 Reset Operation 38
2.9 Summary 39

Problems 40

INSTRUCTION SET SUMMARY

3.1 Introduction 43
3.2 Addressing Modes 43

3.2.1
3.2.2
3:.2:3
324
3.25
3.2.6

Register Addressing 44
Direct Addressing 45
Indirect Addressing 46
Immediate Addressing 47
Relative Addressing 47
Absolute Addressing 48

36

43

CONTENTS vii

3.2.7 Long Addressing 49
3.2.8 Indexed Addressing 49

3.3 Instruction Types 50

3.3.1 Arithmetic Instructions 50

3.3.2 Logical Instructions 51

3.3.3 Data Transfer Instructions 52

3.3.4 Boolean Instructions 54

3.3.5 Program Branching Instructions 55

Problems 58

4 TIMER OPERATION 63

4.1 Introduction 63

4.2 Timer Mode Register (TMOD) 64

4.3 Timer Control Register (TCON) 66
4.4 Timer Modes and the Overflow Flag 66

4.4.1 13-Bit Timer Mode (Mode 0) 66
4.4.2 16-Bit Timer Mode (Mode 1) 67
4.4.3 8-Bit Auto-Reload Mode (Mode 2) 68
4.4.4 Split Timer Mode (Mode 3) 68

4.5 Clocking Sources 68

4.5.1 Interval Timing 68
4.5.2 Event Counting 68

4.6 Starting, Stopping, and Controlling the Timers 69

4.7 Initializng and Accessing Timer Registers 71
4.7.1 Reading a Timer “On the Fly” 71

4.8 Short Intervals and Long Intervals 72

4.9 8052Timer2 76

4.9.1 Auto-Reload Mode 77
4.9.2 Capture Mode 77

4.10 Baud Rate Generation 78
4.11 Summary 78
Problems 79

5 SERIAL PORT OPERATION 81

5.1 Introduction 81
5.2 Serial Port Control Register 81
5.3 Modes of Operation 82

5.3.1 8-Bit Shift Register (Mode 0) 82
5.3.2 8-Bit UART with Variable Baud Rate (Mode 1) 84

viii CONTENTS

5.3.3 9-Bit UART with Fixed Baud Rate (Mode 2) 86
5.3.4 9-Bit UART with Variable Baud Rate (Mode 3) 87

5.4 Initialization and Accessing Serial Port Registers 87

5.4.1 Receiver Enable 87
5.4.2 The 9th Data Bit 87
5.4.3 Adding a Parity Bit 87
5.4.4 Interrupt Flags 88

5.5 Multiprocessor Communications 88
5.6 Serial Port Baud Rates 89
5.6.1 Using Timer 1 as the Baud Rate Clock 90
5.7 Summary 94
Problems 94

6 INTERRUPTS

6.1 Introduction 97
6.2 8051 Interrupt Organization 98

6.2.1 Enabling and Disabling Interrupts 98
6.2.2 Interrupt Priority 99
6.2.3 Polling Sequence 100

6.3 Processing Interrupts 100
6.3.1 Interrupt Vectors 102
6.4 Program Design Using Interrupts 102

6.4.1 Small Interrupt Service Routines 104
6.4.2 Large Interrupt Service Routines 104
6.5 Serial Port Interrupts 107
6.6 External Interrupts 109
6.7 Interrupt Timings 113
6.8 Summary 114
Problems 115

7 ASSEMBLY LANGUAGE PROGRAMMING

7.1 Introduction 117
7.2 Assembler Operation 118

7.2.1 PassOne 119
7.2.2 PassTwo 119

7.3 Assembly Language Program Format 120

7.3.1 Label Field 120
7.3.2 Mnemonic Field 122
7.3.3 Operand Field 122
7.3.4 Comment Field 122

97

117

CONTENTS

8

7.3.5 Special Assembler Symbols

7.3.6 Indirect Address 12

3

7.3.7 Immediate Data 123

7.3.8 Data Address 124
7.3.9 Bit Address 124
7.3.10 Code Address 124

7.3.11 Generic Jumps and Calls

7.4 Assemble-Time Expression Evaluation 125

7.4.1 Number Bases 126

7.4.2 Character Strings 126

7.4.3 Arithmetic Operators

126

7.4.4 Logical Operators 127

7.4.5 Special Operators 1
7.4.6 Relational Operators
7.4.7 Expression Examples
7.4.8 Operator Precedence

7.5 Assembler Directives 129

27
127

124

128

129

7.5.1 Assembler State Control

7.5.2 Symbol Definition

130

129

122

7.5.3 Storage Initialization/Reservation
7.5.4 Program Linkage 135
7.5.5 Segment Selection Directives

7.6 Assembler Controls 138
7.7 Linker Operations 140

137

132

7.8 Annotated Example: Linking Relocatable Segments and Modules 141

7.8.1 ECHO.LST 141
7.8.2 IO.LST 146

7.8.3 EXAMPLES.MS51 147

7.9 Macros 148

7.9.1 Parameter Passing 149

7.9.2 Local Labels 150

7.9.3 Repeat Operations 151

7.9.4 Control Flow Operations

Problems 152

PROGRAM STRUCTURE AND DESIGN

8.1

8.2 Advantages and Disadvantages of Structured Programming 157

8.3

Introduction 155

The Three Structures 158

8.3.1 Statements 158
8.3.2 The Loop Structure 158
8.3.3 The Choice Structure 165

152

155

CONTENTS

8.4
8.5

Pseudo Code Syntax 171
Assembly Language Programming Style 174

8.5.1 Labels 174

8.5.2 Comments 175

8.5.3 Comment Blocks 176

8.5.4 Saving Registers on the Stack 176
8.5.5 The Use of Equates 176

8.5.6 The Use of Subroutines 176

8.5.7 Program Organization 179

Summary 179

Problems 179

9 TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT

9.1
9.2

9.3

9.4
9.5

Introduction 181
The Development Cycle 181

9.2.1 Software Development 182
9.2.2 Hardware Development 183

Integration and Verification 185

9.3.1 Software Simulation 185
9.3.2 Hardware Emulation 187
9.3.3 Execution from RAM 187
9.3.4 Execution from EPROM 188
9.3.5 The Factor Mask Process 188

Commands and Environments 189
Summary 191

Problems 191

10 DESIGN AND INTERFACE EXAMPLES

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

Introduction 193

The SBC-51 193

Hexadecimal Keypad Interface 199
Interface to Multiple 7-Segment LEDs 201
Loudspeaker Interface 205

Non-Volatile RAM Interface 208
Input/Output Expansion 215

Analog Output 217

Analog Input 222

Summary 225

Problems 225

181

193

CONTENTS

APPENDIXES

Quick Reference Chart 229

OPCODE Map 231

Instruction Definitions 233

Special Function Registers 277

8051 Data Sheet 287

ASCII Code Chart 303

MONS51—An 8051 Monitor Program 305
Sources of 8051 Development Products 347

T O MMOoOO®m>

BIBLIOGRAPHY

INDEX

351

353

Xi

INTRODUCTION TO
MICROCONTROLLERS

1.1 INTRODUCTION

Although computers have only been with us for a few decades, their impact has been
profound, rivaling that of the telephone, automobile, or television. Their presence is felt
by us all, whether computer programmers or recipients of monthly bills printed by a
large computer system and delivered by mail. Our notion of computers usually catego-
rizes them as “data processors,” performing numeric operations with inexhaustible com-
petence.

We confront computers of a vastly different breed in a more subtle context per-
forming tasks in a quiet, efficient, and even humble manner, their presence often unno-
ticed. As a central component in many industrial and consumer products, we find com-
puters at the supermarket inside cash registers and scales; at home in ovens, washing
machines, alarm clocks, and thermostats; at play in toys, VCRs, stereo equipment, and
musical instruments; at the office in typewriters and photocopiers; and in industrial
equipment such as drill presses and phototypesetters. In these settings computers are per-
forming “control” functions by interfacing with the “real world” to turn devices on and
off and to monitor conditions. Microcontrollers (as opposed to microcomputers or mi-
croprocessors) are often found in applications such as these.

It’s hard to imagine the present world of electronic tools and toys without the mi-
croprocessor. Yet this single-chip wonder has barely reached its twentieth birthday. In
1971 Intel Corporation introduced the 8080, the first successful microprocessor. Shortly
thereafter, Motorola, RCA, and then MOS Technology and Zilog introduced similar de-
vices: the 6800, 1801, 6502, and Z80, respectively. Alone these integrated circuits (ICs)
were rather helpless (and they remain so); but as part of a single-board computer (SBC)
they became the central component in useful products for learning about and designing
with microprocessors. These SBCs, of which the D2 by Motorola, KIM-1 by MOS Tech-
nology, and SDK-85 by Intel are the most memorable, quickly found their way into de-
sign labs at colleges, universities, and electronics companies.

A device similar to the microprocessor is the microcontroller. In 1976 Intel intro-
duced the 8748, the first device in the MCS-48™ family of microcontrollers. Within a
single integrated circuit containing over 17,000 transistors, the 8748 delivered a CPU,

CHAPTER 1

1K byte of EPROM, 64 bytes of RAM, 27 /O pins, and an 8-bit timer. This IC, and other
MCS-48™ devices that followed, soon became an industry standard in control-oriented
applications. Replacement of electromechanical components in products such as wash-
ing machines and traffic light controllers was a popular application initially, and remains
so. Other products where microcontrollers can be found include automobiles, industrial
equipment, consumer entertainment products, and computer peripherals. (Owners of an
IBM PC need only look inside the keyboard for an example of a microcontroller in a
minimum-component design.)

The power, size, and complexity of microcontrollers advanced an order of magni-
tude in 1980 with Intel’s announcement of the 8051, the first device in the MCS-51™
family of microcontrollers. In comparison to the 8048, this device contains over 60,000
transistors, 4K bytes ROM, 128 bytes of RAM, 32 1/0 lines, a serial port, and two 16-bit
timers—a remarkable amount of circuity for a single IC (see Figure 1-1). New members
have been added to the MCS-51™ family, and today variations exist virtually doubling
these specifications. Siemens Corporation, a second source for MCS-51™ components,
offers the SAB80515, an enhanced 8051 in a 68-pin package with six 8-bit I/O ports, 13
interrupt sources, and an 8-bit A/D converter with 8 input channels. The 8051 family is
well established as one of the most versatile and powerful of the 8-bit microcontrollers,
its position as a leading microcontroller entrenched for years to come.

This book is about the MCS-51™ family of microcontrollers. The following chap-
ters introduce the hardware and software architecture of the MCS-51™ family, and
demonstrate through numerous design examples how this family of devices can partici-
pate in electronic designs with a minimum of additional components.

In the following sections, through a brief introduction to computer architecture, we
shall develop a working vocabulary of the many acronyms and buzz words that prevail

FIGURE 1-1
The 8051 microcontroller. (a) An 8051 die. (b) An 8751 EPROM. (Courtesy Intel Corp.
Copyright 1991.)

INTRODUCTION TO MICROCONTROLLERS

(and often confound) in this field. Since many terms have vague and overlapping defini-
tions subject to the prejudices of large corporations and the whims of various authors,
our treatment is practical rather than academic. Each term is presented in its most com-
mon setting with a straightforward explanation.

1.2 TERMINOLOGY

To begin, a computer is defined by two key traits: (1) the ability to be programmed to
operate on data without human intervention, and (2) the ability to store and retrieve data.
More generally, a computer system also includes the peripheral devices for communi-
cating with humans, as well as programs that process data. The equipment is hardware,
the programs are software. Let’s begin with computer hardware by examining Figure
1-2.

The absence of detail in the figure is deliberate, making it representative of all
sizes of computers. As shown, a computer system contains a central processing unit
(CPU) connected to random access memory (RAM) and read-only memory (ROM)
via the address bus, data bus, and control bus. Interface circuits connect the system
buses to peripheral devices. Let’s discuss each of these in detail.

1.3 THE CENTRAL PROCESSING UNIT

The CPU, as the “brain” of the computer system, administers all activity in the system
and performs all operations on data. Most of the CPU’s mystique is undeserved, since it
is just a collection of logic circuits that continuously performs two operations: fetching

/
Address bus (16) ~ (
)
CPU ,
Data bus (8) (
10 B il
Control bus (6) (
Interface circuitry
RAM ROM
Peripheral
devices
FIGURE 1-2

Block diagram of a microcomputer system

FIGURE 1-3

The central processing unit CPU

(CPU)

CHAPTER 1

instructions and executing instructions. The CPU has the ability to understand and exe-
cute instructions based on a set of binary codes, each representing a simple operation.
These instructions are usually arithmetic (add, subtract, multiply, divide), logic (AND,
OR, NOT, etc.), data movement, or branch operations, and are represented by a set of bi-
nary codes called the instruction set.

Figure 1-3 is an extremely simplified view of the inside of a CPU. It shows a set of
registers for the temporary storage of information, an arithmetic and logic unit (ALU)
for performing operations on this information, an instruction decode and control unit
that determines the operation to perform and sets in motion the necessary actions to per-
form it, and two additional registers. The instruction register (IR) holds the binary code
for each instruction as it is executed, and the program counter (PC) holds the memory
address of the next instruction to be executed.

Fetching an instruction from the system RAM is one of the most fundamental op-
erations performed by the CPU. It involves the following steps: (a) the contents of the
program counter are placed on the address bus, (b) a READ control signal is activated,
(c) data (the instruction opcode) are read from RAM and placed on the data bus, (d) the
opcode is latched into the CPU’s internal instruction register, and (e) the program
counter is incremented to prepare for the next fetch from memory. Figure 1-4 illustrates
the flow of information for an instruction fetch.

The execution stage involves decoding (or deciphering) the opcode and generating
control signals to gate internal registers in and out of the ALU and to signal the ALU to
perform the specified operation. Due to the wide variety of possible operations, this ex-
planation is somewhat limited in scope. It applies to a simple operation such as “incre-

Instruction Program
register (IR) counter (PC)

L | I 1

Registers

Instruction
decode and
control unit

Arithmetic
and logic
unit

INTRODUCTION TO MICROCONTROLLERS

CPU

L~]
Program
counter

Instruction
register
gorltr()l 1
Clock w > ~ Opcode | N <€
gy [N-1
Read >
I
FIGURE 1-4

Bus activity for an opcode fetch cycle

ment register.” More complex instructions require more steps, such as reading a second
and third byte as data for the operation.

A series of instructions combined to perform a meaningful task is called a pro-
gram, or software, and herein is the real mystique. The degree to which tasks are effi-
ciently and correctly carried out is determined for the most part by the quality of soft-
ware, not by the sophistication of the CPU. Programs, then, “drive” the CPU, and in
doing so they occasionally go amiss, mimicking the frailties of their authors. Phrases
such as “The computer made a mistake” are misguided. Although equipment break-
downs are inevitable, mistakes in results are usually a sign of poor programs or operator
error.

1.4 SEMICONDUCTOR MEMORY: RAM AND ROM

Programs and data are stored in memory. The variations of computer memory are so
vast, their accompanying terms so plentiful, and technology breakthroughs so frequent,
that extensive and continual study is required to keep abreast of the latest developments.
The memory devices directly accessible by the CPU consist of semiconductor ICs (inte-
grated circuits) called RAM and ROM. There are two features that distinguish RAM and
ROM: first, RAM is read/write memory while ROM is read-only memory; and second,
RAM is volatile (the contents are lost when power is removed), while ROM is non-
volatile.

Most computer systems have a disk drive and a small amount of ROM, just enough
to hold the short, frequently used software routines that perform input/output operations.
User programs and data are stored on disk and are loaded into RAM for execution. With

