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FOREWORD

The central purpose of this book is to propound that macromolecules in solu-
tion can be mnvestigated by combining the theoretical structures of relativity and
Brownian motion. “Brownian relativity” suggests that time and space in a Brown-
1an system can be envisaged similar to the spacetime of Einstein’s relativity. Average
size and characteristic time of a macromolecule fluctuating in a liquid are so ex-
plained by a Lorentz—FitzGerald length contraction and a time dilation rule, if the
system 1s short-range correlated (or uncorrelated), and by an equivalence criterion
for geometry and statistics whenever correlations are long-ranged. We have mainly
focused on the universal scaling behavior and the conformational statistics exhibited
by linear, flexible and homogeneous polymer chains, planning to look into further
cases in the near future.

Since, disciphnarily, relativistic theories are quite distant from polymer science,
the first chapter introduces the basic concepts and tools required to understand the
tollowing. Several contents are also reported throughout the book as priority sub-
jects for research. Reference and bibliographic sources were mostly limited to those
founding the physics and chemistry from which Brownian relativity needs to restart.

After some remarks on Brownian motion, chapter two formulates the special
theory of Brownian relativity, and employs it to get the basic universal laws (in the
molecular weight) of single polymer chains.

Chapter three enters the general version of the theory, devoted to the analysis of
stronger correlations and finite polymer volume fractions. Geodesic and Einstein’s
field equations allow geometrical interpretation of the effect of concentration fluc-
tuations and entanglement points.

In chapter four, the attention turns from the universal scaling in physical quan-
tities to the scaling of probability distributions. We worked out in the third section
some consequences that this point would have on the longstanding issue of turbu-
lence i liquids.

The fitth chapter presents, in the form of fundamental ideas and a couple of
examples about liquids and macromolecules, further Brownian relativity implica-
tions. We started out to state the basic concepts of a statistical-mechanical problem
by means of gcometry alone. This “shape mechanies™ would deal with the shape
of objects, as an independent physical observable, putting forward that (Brownian)
statistical phenomena, likewise polymers in solution, may represent a particular case
of a far-reaching “geometrical scaling” of forms and shapes.

In summary, this book is addressed to any polymer scientist, but can certainly
be significant to anybody with interests in either theoretical physics and chemistry
(i.c., field theory and statistical mechanics) or any n-molecular system seen from
another perspective.

Trieste, X/2007
Stefano A. Mezzasalma
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1. HISTORICAL SUMMARY

Mechanics is part of field theory (i.e., gravitation and electromagnetism) and
generally concerned with the statics and dynamics of any material body or medium.
Its classical formulation relies on the existence of frames of reference, named inertial,
where Isaac Newton’s three laws of motion (1687) hold. The concept of inertial
frame is one of the most important of all sciences, and can be found in Newton’s
first law (or Principle of Inertia), resuming and improving the concept of inertia
carlier discussed by Galileo Galilei (1632). It states that there is a family of reference
frames in which any isolated particle moves with uniform motion along a straight
line. Once compelled by some external interaction, its dynamic state varies, obeying
the second law of motion: moving force equals (a constant) mass times acceleration,
F = ma.

Classical mechanics was developed into two complementary views, vectorial
and analytical. The first isolates the particles, modelled as they were individual,
and makes direct use of Newton’s second law of motion. Accordingly, one should
be able to separate cach resultant particle force, and proceed with solving the as-
sociated differential equations. In his principle, Jean B. d’Alembert (1743) stated
an equivalence of any accelerating body with the system which is rendered static
upon adding the force and torque of inertia. Despite some shortcomings, such as
missing the “polygenic™ character of inertia that, unlike monogenic (or analytic)
forces, is unable to follow from differentiation, this description could fit both stat-
ics and dynamics but it can fail to model any particle system which is complicated
enough. Additional postulates were next to no use to complete the unknown in-
formation on the specific interactions met in concrete experiments, as Newton
hoped to supply by his third law, action equals reaction. This spurred Joseph L. La-
grange (1788) to seck a more general assessment of d’Alembert’s Principle, attaining
a generalization of the virtual work theorem for reversible displacements. The latter
was the first variational condition of mechanics, argued by Guidobaldo del Monte
(1590 ca) and developed by Galileo Galilei (1638) for the inclined plane and simple
machines.
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The d’Alembert—Lagrange Principle provides an equilibrium criterion, for
forces and motion set in opposition, to understand whether a virtual motion may
or may not become actual.

In his 1788 book on analytical mechanics, Lagrange published the famous equa-
tions, also known as the Euler-Lagrange equations, allowing a unified treatment of
forces. Armed with the concept of total energy, in place of the motion law, one
could finally tackle any mechanical system as a whole. His work lay clearly at the
basis of other relevant contributions at that age, as the five volumes on celestial
mechanics by Pierre=S. Laplace (1798-1825), complementing the geometrical ap-
proach initiated by the Principia into (differential) calculus. Successively, William
R. Hamilton (1843) interpreted the principles by d’Alembert and Lagrange into
a variational problem for a definite time integral, called the functional action, the
variation of which is equal to the virtual work time integral. Such as the virtual
work theorem states that, at mechanical equilibrium, this variation vanishes at any
time, d’Alembert—Lagrange’s and Hamilton’s views become equivalent whenever
the action is stationary. This statement is usually, but mistakenly, named as Principle
of Least Action, since the functional needs only to be stationary (i.e., either at a
maximum, minimum or saddle points). Hamilton’s action integrand identifies La-
grange’s function (Lagrangian or, in Mie’s language, “world function”), depending
on all degrees of freedom, positions and velocities. Requiring the functional to be
stationary vyields finally the Euler—Lagrange equations, unequivocally defining the
laws of motion, regardless of the reference frame. A dually equivalent picture can
be promptly derived in terms of Hamilton’s function (or Hamiltonian), switching
from Lagrangian to Hamiltonian mechanics.

Hamilton thus consolidated a tradition, for which it is not entirely clear to
whom the credit should be given, whether it should be to Pierre de Fermat (1662),
with his Principle of Least Time for light pathways, or to Pierre L. Maupertuis
(1744), who is commonly acknowledged to be the pioneer, or even to Leonhard
Euler (1744) and Gottfried Leibniz (1707). In line with d’Alembert’s and Lagrange’s
statements, remember the Principles of Least Constraint, Least Curvature, and sta-
tionary action formulated respectively by Carl E Gauss (1829), Heinrich R. Hertz
(1894), and Carl G.J. Jacobi (1842—1843). Last two milestones of variational calculus
in mechanics that we would like to recall came from the general theory of relativity
(see the Einstein—Hilbert action in the last two section) and the work by Marston
Morse (1920—1930), achieving a neat mathematical assessment.

In the mechanics built upon the laws by Galiler (1632-1938) and Newton
(1684—1687), time and space are considered to be absolute properties. The expres-
sion “inertial frame” denotes therein any reference system, at rest in the absolute
space or uniform motion, where time is flowing uniformely, independently of the
observer. We must wait for the special relativity by Albert Einstein (1905) to un-
veil the mistakes behind this physical conception. Special relativity belonged to a
wide forward-looking plan which, in the same (1905% “wonder”) year, produced
the three epoch-making theories of relativity, Brownian movement, and photoelec-
tricity. Researching on the nature of light, heart of Einstein’s scientific program,
led him to work on the role of some crucial dualities in physics and chemuistry:
continuity—discreteness, fields—particles, determinacy—undeterminacy.
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The theory of relativity, as the name purports, deems the concept of absolute
motion as physically unmeaningful. Its special version appeared immediately as the
best candidate for conciliating electromagnetism to gravitation and, in particular,
for the unification of electromagnetic phenomena (electricity, magnetism and op-
tics). At Einstein’s time, gravitational and electromagnetic forces were believed to be
the only governors of all natural phenomena. Furthermore, the use of Newtonian
mechanics allowed the notions of absolute time and simultaneity, thus of a uniform
metric structure (i.e., Euclidean) that would be common to all observers. In partic-
ular, every time that space (x”) and time (¢) coordinates would change according to
a Galilean transformation, with given velocity (v”) along a fixed direction:

;

X" =x"—v't, xt =x1 (g # p)

the second and third laws of motion would be left invariant. Provided they held at
least in one inertial frame, Newton’s laws were expected to be valid in all of them,
implying that one dynamics experiment alone could never suffice to distinguish
among different inertial motions.

With the coming of the equations of electromagnetism by James C. Maxwell
(1873), which are not invariant upon Galilean transformations, such conclusions
were for the first time contradicted. As the light speed (¢) seemed to play the role
of an absolute constant, that particular frame in which Maxwell’s equations would
apply had to be unambiguously distinguishable from any other. Albert A. Michelson
and Edward Morley (1887) performed thus their famous experiment, aimed at de-
tecting if the earth undergoes a relative motion with respect to a preferred reference
system. The earth was believed being at rest relative to a special medium, termed
ether (or ather), thought of as to host the propagation of clectromagnetic waves.
In short, an interferometer was designed to measure the time interval coming from
the pattern of interference fringes formed by light on its reunion, after traveling
along two different paths. Surprisingly, the two experimentalists obtained a “null
result” and, since the earth velocity within the ether could not be zero throughout
an orbit, there was necessarily something wrong with the supposed dynamic and/or
electromagnetic pictures.

Einstein’s answer to this puzzle was courageously not concerned with the validity
of Newton’s or Maxwell’s equations, nor with discussing or making any assumption
about matter and molecular forces, optics or the nature of light, but “only™ with
disowning the hypothesis of absolute space and time. He introduced two postulates,
of relativity and constancy of the light speed, questioning the assumption of perfect
clocks and rigid rods. In his paper dated June 1905, “On the clectrodynamics of
moving bodies” (the first of his in the references), the dynamics of bodies and fields
was unified through a relativistic invariance of movements. It is also instructive to
note that Einstein didn’t plunge into the wave-particle duality of light, but limited
himself to the concept of light-ray, suiting either aspects.

The central implications of the special theory regard the effect of the relative
motion on the measurement of lengths and tme intervals. With increasing rela-
tive speed, clocks run slower and rods shrink along the direction of movement.
George E FitzGerald (1889) and Hendrik A. Lorentz (1892), on supposing that
the interferometer arm could contract in relative motion and compensate the earth
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contribution, independently proposed an (earlier) explanation of Michelson and
Morley’s experiment. Presumably, as they did not question the ether existence in
depth, the FitzGerald—Lorentz contraction failed to make sense to the majority of
the scientific community at that time. Another formulation which was even more
unlucky 1s Henry Poincaré’s (1904), who had already perceived in 1895 the ideas
that nine years later would take the form of a “Principle of Relative Motion™ (one
of his six principles of physics). He stated it in the form of a deep symmetry law
of nature and, in a study which appeared before the 1905 Einstein paper, wrote
the relativistic equations for the charge density and velocity. It was his opinion that
the absolute motion of any form of weighable matter could never be unmasked,
the only possibility being to detect the relative motion of two material bodies.
To explain gravity, Poincaré made use of the symmetry group devised by Lorentz
(1899-1904), who published a preliminary version of it in 1895, and this is why the
coordinate transformation of special relativity carries the names of both authors.
However, again, Einstein’s work took deeper root in the contemporary thought,
and Poincaré’s theory didn’t get the consideration it deserved. Two last meritwor-
thy mentions go to Woldemar Voigt (1887) and Joseph Larmor (1897). Voigt, in the
clastic theory of light, distinguished a local time for the moving frame, descending
from a linear function of the spatial coordinates and measured with an invariant
unit of time. It is possible to show that the wave equation conserves its validity also
in the moving frame. His coordinate transformations were formally close to those
published subsequently by Lorentz, but passed totally unobserved in the literature.
Larmor’ transformations were equal instead to Lorentz’s, also pioneering the influ-
ence of motion on the measure of time. However, he refused the heart of Einstein’s
work, such as special relativity and the curvature of space.

The most important consequence of the Lorentz—Poincar¢ symmetry remains,
however, the “energy inertia” and the celebrated mass—energy equivalence, E =
mc?. Tt was still enunciated by Einstein (1905), in a paper entitled “Does the In-
ertia of a Body depend upon its Energy Content?” (Einstein’s second referenced
here), and written alimost as an afterthought to the special theory. Before this work
appeared, mass and energy were regarded separately, each having their own con-
servation law. Such an equivalence contradicted this belief, advancing the idea that
every form of energy possesses the counterpart of an own inertia.

After his “Annus Mirabilis,” Einstein proceeded towards a general theory of
gravitation which would be consistent with special relativity and giving a relativis-
tic version of Newtonian mechanics. What rendered the former theory “special”
was 1ts strict suitability to systems in uniform motion alone. His main objectives
were thus to extend it, i.e., accounting for accelerated motions and understanding
how gravitation could be dealt within it. Meanwhile, the mathematician Hermann
Minkowski (1907) noticed that the natural geometrical space, where embedding
relativity, were to be non-Euclidean. The “pseudo-Euclidean” spacetime carrying
his name joins the four coordinates into a continuum, giving Einstein invaluable
ideas and a robust background from which to proceed further. Ten years later than
special relativity, after many attempts and much laborious work, Einstein (1915)
published his general relativity and field equations. It was not the only theory of
relativistic gravitation ever presented, but the first agreeing with the experimental
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tests. He introduced the famous (strong) Principle of Equivalence, for gravitation
and acceleration, and abandoned the uniform Euclidean spacetime for a more gen-
eral Riemannian description. Regions of non-vanishing local curvature identify
now the accelerated systems, in contrast with flat reference frames that stand for in-
ertial observers. It should be remembered that, independently of Einstein (five days
before), also David Hilbert achieved contemporarily the (general covariant) field
equations from a variational principle of stationary action (the “Einstein—Hilbert
action”). The reasons why such a formulation had however a less resonance in the
physics community lie in its axiomatic approach and its strict suitability to a material
system governed by the theory of Gustav Mie (1912-1913).

General relativity was strongly influenced by the ideas of Ernst Mach (1883—
1893), of whom Einstein considered himself to be one the followers, particularly
on inertia. According to Mach, space is not an absolute and indifferent physical
structure, as first René Descartes (1644) and then Newton posited. On proceeding
with the line of George Berkeley (1710), who rejected the Newtonian concep-
tion of an absolute space, and judged meaningless the motion of any body which
would not be relative to other matter, he was persuaded that inertia originates from
the mass distributed around. Mach referred the laws of inertia to the ecarth and,
for larger mass distributions, to the fixed stars. The Machian notions of “physi-
cal” space and inertial frame change thus significantly. The former identifies the
ensemble of all concrete distances among material points, the latter should be de-
fined with respect to the rest frame of the universe. Mach argued that gravitation
should be univocely (covariantly) formulated only in terms of matter and energy,
and stated that Newton’s absolute acceleration was to be replaced by that relative
to the universe mass distribution. Also, once the resistence to absolute accelera-
tions would be (relativistically) meaningless, on infinitely spacing out all masses in
the universe, he expected inertia to vanish (relativity of inertia). Einstein acknowl-
edged a debt to these brilliant insights by calling his postulate Mach’s Principle, but
general relativity could solely provide a partial account of his view. The (strong)
Principle of Equivalence is itself incompatible to it and, being forced to make
a choice, the Einsteinian spacetime is more absolute-Newtonian than physical-
Machian.

Finally, Einstein’ theory replaces the instantaneous interaction at a distance,
ruling Newtonian mechanics, with the concept of field. Fields denote physi-
cal agents by which forces establish, their action being no longer at a distance,
but bounded to the infinitesimal neighbourhood where interactions take place.
In Newtonian mechanics, whatever mass distribution is involved, the second law
of dynamics never changes its form, but there is a law for any physical en-
tity and type of force (e.g., Coulomb’s force for electric charges). Also from
the Einsteinian viewpoint, field and motion equations are separated. Test parti-
cles move along the geodesics “traced out” via the background metric, while
changing geometry corresponds to altering matter and momentum distributions
enclosed inside the spacetime. In a synthetic fashion, mass—energy ~ curvature,
which sums up one of the most genial insights ever had in the history of sci-
ence.
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