Lecture Notes

in Physics

Edited by H. Araki, Kyoto, J. Ehlers, Miinchen, K. Hepp, Ziirich
R. Kippenhahn, Miinchen, H.A. Weidenmiiller, Heidelberg
J. Wess, Karlsruhe and J. Zittartz, Koln

301

G. Ferenczi F. Beleznay (Eds.)

New Developments
in Semiconductor Physics

Proceedings, Szeged, Hungary 1987

@ SpringerVerlag



Lecture Notes
in Physics

Edited by H. Araki, Kyoto, J. Ehlers, Miinchen, K. Hepp, Zlrich
R. Kippenhahn, Munchen, H.A. Weidenmiiller, Heidelberg,
J. Wess, Karlsruhe and J. Zittartz, Koln

Managing Editor: W. Beiglbock

301

G. Ferenczi F. Beleznay (Eds)

New Developments
in Semiconductor Physics

Proceedings of the Third Summer School
Held at Szeged, Hungary
August 31 — September 4, 1987

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo



Editors

G. Ferenczi

F. Beleznay

Research Institute for Technical Physics
of the Hungarian Academy of Sciences
P.O.Box 76, H-1325 Budapest, Hungary

Organizing Committee

F. Beleznay (Chairman)
G. Ferenczi (Program Chairman)
B. Pédor secretary)

E. Németh  (administrative secretary)

(
(
(
M. Torok (local arrangements)
(
|. Tanczos  (administrative secretary)

Organized by

Semiconductor Branch of the Roland E6tvos Physical Society
Research Institute for Technical Physics of the HAS
Attila J6zsef University, Szeged

ISBN 3-540-19215-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19215-8 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988
Printed in Germany

Printing: Druckhaus Beltz, Hemsbach/Bergstr.
Binding: J. Schaffer GmbH & Co. KG., Griinstadt
2158/3140-543210



PREFACE

The semiconductor branch of the Hungarian Physical Society organized
its third Summer School at Szeged, Hungary from August 31 to Sep-
tember 4, 1988 with the intention of discussing the most recent
developments in semiconductor physics. (Proceedings of the previous
meetings are published in the Lecture Notes 1in Physics series as
Volume 122 and Volume 175.) 84 participants from 18 countries attended
the meeting, which included 15 invited talks covering the areas of
multilayer growth technology, theory of electron states, transport
theory, defect related effects and structural properties of semicon-
ductors. 33 contributed papers, most of them closely related to the
invited talks, gave an exciting insight into the research in this
field.

The present volume is a selection of the most interesting papers
presented at the Summer School, and its format follows that of the
meeting: invited papers are accompanied by related contributions. As
the table of contents indicates, we found that transport theory and
defect-related effects are the most widely researched subjects in
contemporary semiconductor physics. Other topics are, nevertheless,

well represented.

At the closing session it was suggested that, since the meeting
had been so successful, similar events held at regular intervals
would be welcome. First steps are being taken to organize future
Schools as joint ventures of the Physical Societies of neighbouring

countries.

The editors are grateful to Eva Nemeth for her expert help in

preparing this volume.

Budapest, Hungary George Ferenczi

January 1988 Program Chairman
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INTEGER QUANTUM HALL EFFECT
- Present state of the theory -

J. Hajdu
Institut flir Theoretische Physik
Universitdt zu Koln, D-5000 KdOln

The basic experimental facts concerning the integer quantum Hall ef-
fect (QHE) are summarized and confronted with the prediction of stand-
ard transport theory. The different ideas and approaches to explain the
QHE are reviewed and commented upon. The phenomenological model which
simulates localization in additive disordered systems at zero tempera-
ture by bound states is considered for two system-geometries. For a fi-
nite cylinder a spectral stability condition for the QHE is formulated
and shown to be sufficient for current compensation. For a torus the
topological quantization of the Kubo Hall conductivity in mobility gaps
is outlined. Some problems facing current and future research are pointed

Out.

1. Facts

At high magnetic fields (B~10T) and low temperatures (T ~ 1 K) the
Hall resistance RH of a silicon MOSFET as a function of the gate voltage
UG shows characteristic plateaux. Since UG is proportional to the carrier
density n this observation contradicts the established theory which
H ~ 1/n.

In 1980 Klaus von Klitzing discovered that the plateau values of RH

are entirely independent of the properties of the sample, and are given

o voh
Riﬂ (.F\OKRL“*“) :'R;T :;E ) ko= b2, - (1.1)

predicts R

/1/. Furthermore, in the plateau regimes of R, the (longitudinal) re-

sistivity R practically vanishes. Shortly theieafter this integer quan-
tum Hall effect (QHE) was also observed in GaAs heterostructures (in
this case n is constant and B is varied). The plateaux are centered
(approximately) around the corresponding integer values N] = k of the

filling factor

M = (2wf)n

(1.2)

Here 1 is the magnetic length, l2 = Hfi/eB. Figs. 1 and 2 show some
typical experimental data. At present the experimental accuracy of the
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Fig. 1: The quantum Hall
effect /1/
quantization (1.1) is better than 10_7. Thus, the QHE provides a high

precision measurement of the Sommerfeld fine structure constant ez/hc.

The conductivity layers in MOSFETs and heterostructures behave like
two-dimensional systems. At sufficiently weak currents the conduction
properties of an homogeneous and isotropic rectangular system (with area
Ar = LxLy) in a perpendicular magnetic field are described by the lin-
ear relations between currents and voltages,

UX = RIX‘\— RHI7/

(1.3)
Intr?duc%ng.the electri? field E, EX = Ux/Lx' EY = Uy/Ly and the current
density j, iy & IX/Ly, ]Y = Iy/Lx we get
Ey = - \
X ?kx QH é')’ (1.4)

Ey = =Sudx* € by

with resistivities

@ = R(y/Ly), 24,

Notice that in two dimensions RH is independent of the size of the sam-
ple. Inverting (1.4)

}xzwﬁx—cHEy (1.6)

Sy

GHEX'\'WE)'



with conductivities

“"=——‘z? = ) Th= *‘ng—z— (1.7)
g +?\.\ ? '*'%H
Notice that (if QH # 0) T and g vanish simultaneously. In the usual

Hall measurement Iy = 0. Since in the plateau regimes R = 0 (Ux<:10_14V)

there @’ = 0 and

2,
S (plateau) = k—i\— p \«.—.O}l)zl (1.8)

In 24 the physical dimension of the conductivity is

{ ] L &—3 _ charge-velocity/area

- voltade/length
[E] (1.9)
— _charge/time _ (charge)2
energy/charge action

- in accordance with (1.8) and (1. 1) The plateau values of Gh are in-
teger multiples of the atomic unit e /h of the 2d conductivity.
2. Hints

According to the simple classical kinetic model the Hall conductivity
of free electrons is

o] en
G-H = ——g—‘ (2.1)
or with (1.2)
° el
T, ==
H 'v’l " (2.2)

Notice that, at integer filling, N] = k, the measured values of the Hall
conductivity of (rather complex) real 2d systems coincide with the corre-
sponding values calculated for the (fictitious) free electron system by
using the most simple classical model (cf. Fig. 3). In fact this is even
true for the Hall conductivity of disordered systems calculated by per-
turbation-theoretical evaluation of the Kubo formula (cf. Fig. 4). The
stability of the Hall conductivity at integer filling((}"H =k e2/h) isy
perhaps, not so surprising because the states corresponding to completely
filled Landau levels are highly resistent against perturbation.

Due to the disorder the free electron Landau levels

a; - \) _-t;o%(\)*_ ) (2.3)

UJC = eB/m, V=10,1,2,.., are broadened to energy bands. In lowest order
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cumulant approximation for a white-noise correlated random potential,
the free electron density of states

ne) = —— 5 S(&-¢€,) _—

amw 4% g

is replaced by

nie)= ! -\J_—Q\:_{—L-exF[—ZQL‘__‘E—"—)T (2.5)

amw*

with
2
= —T—r—“\?\wc_?/'c (2.6)

where T is the B = 0 relaxation time (in Born approximation) /4/. Each
band contains 1/2‘“'12 states per unit area (the degree of degeneracy of
the Landau levels). For high mobility samples and sufficiently high
magnetic fields, such that W¢T > | , the overlapping of bands is
insignificant. The density of states canbe used to express the chemical

potential g in terms of n,B and T,

n:X‘Y—_ %-\—x_—_g_ﬁ_(a)n@)o\& (2.7)

where foL = f( eq ) is the Fermi distribution function

Fle) = {explle-8)/kaT] +1} (2.8)



For free electrons, with (2.4)

\
= e 2_F(e) (2.9)

and, with (2.2),
° e
TH(§)=T§H&H (2.10)

In the limit T-> 0

um
I

™
o
=
Q.

2
TL’\EJ;):%- Y BlEe=£y) (2.11)
v

Thus G';(n) is a straight line but Sﬁ( 6F) is a step function (Fig. 5).
(This is all right since n = n( &F) is a step function as well.) In
contrast to this, the observed Hall conductivity extrapolated to T = 0

(shown in Fig. 2 ), is a step function on the n scale. Assuming, however,
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Fig. 5: Fermi energy as a Fig. 6: Hall conductivity
function of the as a function of
filling factor for the Fermi energy
free electrons. for free electrons
D = 1/2T12

that in a real system n = n( 6EJ is a smooth function (as indicated by
model calculations) we can conclude that on the EF scale the extrapo-
lated values of the measured Hall conductivity is exactly the same as

for free electrons, given by (2.11). Thus, a way to characterize the QHE
effect is to say that, at T = 0, G}# 6F) is the same as for an ideal free
electron gas - inspite of the broadening of the Landau levels to energy
bands. This behaviour is obviously radically different from that pre-
dicted by the traditional transport theory for disordered systems (per-
turbation-theoretical evaluation of the Kubo formula).



3. Ideas and Approaches

Shortly after the discovery of the QHE several ideas were developed
to explain this suprising phenomenon. Aoki and Ando /5/ pointed out that
the QHE may be brought about by localization of electrons in a 2d ran-
dom potential. In fact, the vanishing longitudinal conductivity in the
plateau regimes of (TH seems to be an obvious indication of localization.
Furthermore, localization was shown to occur in the tails of the Landau
bands /6/ and, in the limit of very high magnetic fields, everywhere
outside of small ranges around the band centers ( € =€, ) /7/. Since
an operative high field transport theory which incorporates localiza-
tion was - and still is - not available, Aoki and Ando simulated locali-
zation by assuming bound states in which the expectation value of the

velocity vanishes,
{x | v |a>= 0 for bound states (3.1)

Connecting this phenomenological description»of localization with the
Kubo formula they demonstrated™hat, at T # 0, the longitudinal conduc-
tivity vanishes and the Hall co“t"/'gtx Gy keeps constant as long

as the Fermi energy varies within a regime:'of bound states. Unfortun-
ately their proof, showing the plateau”values ot Gy to coincide with
the quantized ones (1.8), seen in experiment turned out to be incom-
plete. At first glance the proof can be supplemented by reference to
perturbation theory /8/ or to the St¥eda formula /9/ both of which lead,
for M =k, to Gh =k ez/h. However both ways of fixing the plateaux
at the observed quantized values are rather unsatisfactory. The pertur-
bation theory definitely tails for ﬂ.¢ k. The Stfeda formula which re-
quires spectral gaps between the Landau bands in order to yield the
quantized values for integer filling, seems to hold for a confined sys-
tem only /10/. For such systems, however, due to edge states no band
gaps exist. As we shall see (cf. Section 4) considerably more effort is
needed to prove quantization within the phenomenological description of
localization /10/. In any case, numerical analysis by Ando /11/ has con-
firmed that the QHE can be explained in terms of independent electrons
moving in a random potential.

If the QHE is due to localization, the loss of current (caused by
localization) must be compensated by an additive acceleration in the
delocalized states - in order to maintain Gh =k e2/h for q = k.
Prange /12/ and subsequently other authors /13,14/ have attempted to
demonstrate compensation for some model systems. An elegant way of
proof utilizes Levinson's theorem. In the usual formulation this theorem



relates the scattering phase shift to the number of bound states brought
about by a certain potential. We shall see (cf. Section 4) that the con-
ditions for the QHE in the phenomenological description of localization
are sufficient to prove conpensation (and to derive Levinson's theorem)
/15/. This is an important fact because localization cannot adequately
be explained by potential scattering.

A simple model which illustrates localization and explains qualita-
tively the QHE is a system of independent electrons moving in a slowly
varying random potential V(x,y) and a strong magnetic field /16,17/.
Introducing center and relative coordinates with respect to the cyclotron
motion,

X:X-&—\f//wc) \ﬁ:\/—v'x/wc (3.2)

(vx,vy) and (X,Y) are pairs of conjugate variables,
[g— Nn }f_nk kﬁxo' Z. (3.3)
A ey

EX/?‘%.—.&QL (3.4)

The velocitycomponentsvX aﬁdaxy are bgfinded; the expectation values of
the relative coordinates in an energy eigenstate is proportional to 1,
i.e. to 1/B. Consequently, for sufficiently large B we can approximate
V(x,y) by V(X,Y). Furthermore, since (according to (2.4)) the limit

B-> o0 is equivalent to the classical limit h—> 0 we can approximate the
quantum dynamics by the corresponding classical one. Replacing the kin-
etic energy mv2/2 by its eigenvalue Ez‘ , we get the slow motion

Hamiltonian

H=2%+~V(XY) (3.5)

The equations of motion

5k S EEYL )} =:_.J___22!_ (3.6)
eB 2y ek ?X

describe a reversible 1d motion along equipotential lines V(X,Y) =
const. If the space average of V vanishes then, according to percolation
theory, in the thermodynamic limit, all equipotential lines in the bulk
with energy & 4: E:) are closed (localized states), and open equi-
potential lines (delocalized states) exist only at £ =&, (i.e. at

the centers of the Landau bands).

To calculate the current we have to add to V the potential energy



Obviously, the motion
along closed equipotential lines does not contribute to the net cur-
rent

e(# due to a driving electric field E = -grad ¢

° s %%d\X dy

} (3.7)
7 Av 5 AT 4> -P( eR 'a)(

Ar = LXLy U=V +e Assuming that all channels of open (percolating)

equipotential 1lines with gy8¢8 \

are occupied we get for
the current at T = 0

+\

2
&VZ%ZGQEF"EU)ZAU‘Q/@LX (3.8)

where ZSU /e 1s the potential drop across the l channel. Since

Z; AU /e 1s nothing else but the total potential drop across the sam-
ple, (3 8) is equivalent to

g \Qe1

= —_ (3.9)
1 h

where k is the largest integer for which k £ m o Unfortunately, this

impressingly simple derivation of the desired result (3.9) (Iordansky

/16/) does not even exclude corrections of the order 1/L. The formula-
tion based on linear response theory (Kubo formula) /17,18/ is subject
to the same limitation. Since in experiments, 1/L ¢$10_4
acy of quantization is 108
is at least (1/L)2

and the accur-
, the required accuracy of the proof of (3.9)
This may have motivated the aim to combine the high
field percolation model with the gauge argument /13/ (see below). The
problem, however, is not to prove the stability of (3.9) within the
leading order high field model (which is guaranteed by the topologically
distinct nature of closed and open equipotential lines) but to determine
the accuracy of the model as such. For the relation of the high field
percolation model to percolation theory, cf. Trugman /19/. The onset of
dissipation is investigated in /20,21/. The high field model also pro-
vides an explanation of observed thermoelectric effects analogous to the
QHE /22/.

The gauge argument asserts that the QHE is due to a particular sym-
metry property: for a 2d system on the surface of a cylinder, the change
of axial flux by a unit flux quantum, together with the transfer of a
unit charge from one edge of the cylinder to the other (which are at
different potentials) is a symmetry transformation of the system if, at
T = 0, the Fermi energy lies in a mobility gap (Laughlin /23/) or, more



generally, the ground state of the system is non-degenerate and separ-
ated from the rest of the energy spectrum /24/. The gauge argument re-
quires some interpretation. This is provided, for instance, by the topo-
logical approach to the QHE /25,26/ which was initiated by the observa-
tion that for an electron in an ideal 2d lattice the Hall conductivity
defined by the Kubo formula is topologically quantized and equal to an
integer multiple of ez/h if, at T = 0, the Fermi energy lies in an energy
gap /27/. (The same result follows also from the St¥eda formula /28/).
The characteristic feature of the topological approach is a double-peri-
odic Hamiltonian (2d system on a torus). As we shall see (cf. Section 4)
the Kubo Hall conductivity for such a system can be proved to be topolo-
gically quantized if, at T = 0, the Fermi energy lies in a mobility gap
- the localization being simulated by bound states /29/.

Of course, a theory of the QHE as a localization phenomenon is only
acceptable if it explains rather than assumes localization. Confronted
with this requirement, the state of the art in QHE theory is rather
unsatisfactory. Following the lines of the B = 0 self-consistent lo-
calization theory Ono /30/ obtained for the high field longitudinal
conductivity exponential delocalization at the band centers (E£=¢&,).
Perturbation theory yields qualitatively the same result /31/. Similar
investigations for the Hall conductivity have not yet been reported.
For the time being the only localization theory which treats ¢ and 0}1
on equal grounds is the field theory by Levine, Libby and Pruisken /32/.
In this theory the relevant long range modes are described by the
Lagrangian

L =2 welig, (3.10)

where .ﬂ 2 is due to the axial symmetry breaking by the magnetic field
and the coupling constants are the mean field values of the longitudinal
and the Hall conductivity respectively. For finite action field config-
urations (instantons) Jiz is a topological invariant /33/. COnsequently,
the two parameter scaling space decomposes into equivalent sectors. Le-
vine et al /32/ argue that for T 0, N4°)and @Aw

H
0 and k ez/h respectively. Although this seems rather plausible a formal

are renormalized to

proof (solution of renormalization group equations) is still missing.
Still not clarified is the role played by the Coulomb interaction
between the electrons. As pointed out recently the Hall conductivity of
a 2d free electron system depends strongly both on the potential distri-
bution of the driving force (E) /34/ and on the system size (in the di-
rection of the field) /35/. It is believed that the Coulomb interaction
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substantially reduces these effects and, thus, acts to set up the clas-

sical free electron Hall conductivity (2.1).

4. Spectral stability

4.1 Finite cylinder

We consider a 2d system of independent electrons in a random poten-
tial V(x,y) on a rectangular part of the (x,y)-plane in a perpendicular
homogeneous magnetic field B. In the x direction the electrons are as-
sumed to be confined by a potential Vc(x) to an interval of finite
length Lx. In order to get a non-vanishing current, say in the y direc-
tion, we impose the periodic boundary condition

Yooy ety =% ()

on the wave functions. By (4.1) the geometry of the system is - with
respect to connectivity - equivalent to the surface of a cylinder

R x S'. Unfortunately, the usual coordinate representation of quantum
mechanics cannot be implemented on S'. The reason is that (4.1) prevents
both the existence of a global multiplication operator corresponding to
vy and the unitary equivalence of the operators -ih 0/9Qvy and-iti /2 y +
const. One way to overcome this difficulty is to apply the U(1l) bundle

periodically in the y direction
- 4.2
V(x,7+\_7) _\/(x,y) (4.2)
and apply the usual coordinate representation
\ : 2L
r_9_ (%2 +e%x> +Vy) +V ) (4.3)
2%

Owing to (4.2) the Bloch theorem applies in the y direction

Héa(,y; )=, 0, (xy, (4.4)
v/

. (XY, 7)) =¢ / U, X,y ) (4.5)

uh(x,ya—L),,w‘)’):un(x,y;&) (4.6)

being the Bloch wave number. The Bloch factors W, satisfy

H(V)un(*,)';ﬂ'):—-&nKO)u“(x,yja—) (4.7)
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with

l‘ ) t\')_ 'b?‘ | 2
| (& :____+~<.;«;l+ 4.8

2w ¥ Awm dy JFO'+QBX> FV(y )+ Velx) (4-8)
Thus, un(x,y;\‘}-) can be interpreted as the wave function k\)n ('\3’) corre-
sponding to a representation

i Py(&)a-m—;o—; Ry oy QZ-Liy (R/2) (4.9)

and restricted to y ¢ [0, L [
. . Y - . . - =
By restricting &J to the first Brillouin zone, Cr:-jbe [f]_;' [

we get the usual energy bands &v\(03) labeled by the band i dex7;. In

the case of free electrons (VV = 0) with Dirichlet boundary conditions

*}n = 0 for x = + Lx/2 replacing the confinement potential (Teller-model)
the energy spectrum of H(+> = 0) depends on the eigen values ﬁkn,

kn = %Ji-n, ne g of the conserved momentum py = -if 3V5y as well as
on theYLandau quantum number V = 0,1,2,... (Fig. 1). The energy bands

&n (.\)—o) are related to the spectrum 6\)(\(“) by

En () = 8y (ks 7)) (4.10)

5\)W)=&u(\<n+3}),3‘&3&/ R (4.11)

In the Landau model (Vc =0, Lx" o ) these energy branches are the fa-
miliar equidistant degenerate Landau levels &v(&) = Ey= * Wc@*"\{)
In the Teller model the energy branches depend on ¥ . For sufficiently
large values of L_/1 the lifting of degeneracy is significant at the
edges ~ ~ th/Zl only. For the Hall effect in the Teller model, cf.
the recent work by Ono and Kramer /36/.

In a disordered system (V # 0) both extended and localized states
may exist. In the phenomenological model /5/ to be adopted in this
and in the following section, the localization is simulated by bound
states in which the expectation value of the velocity -i: [H/Y]

y =
(da(M)|v \4>,,(0‘)> = L% W) 1oy, (7) (e () -1 26n(™ {4.12)
P4 n Y n ‘> = oy
with
oH (4.13)

——

vy (9) =

[\

L
*



