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Preface

This monograph presents in a unified way various refinements of the
classical central limit theorem for independent random vectors and in-
cludes recent research on the subject. Most of the multidimensional results
in this area are fairly recent, and significant advances over the last 15 years
have led to a fresh outlook. The increasing demands of application (e.g., to
the large sample theory of statistics) indicate that the present generality is
useful. It is rather fortunate that in our context precision and generality go
hand in hand.

Apart from some material that most students in probability and statistics
encounter during the first year of their graduate studies, this book is
essentially self-contained. It is unavoidable that lengthy computations
frequently appear in the text. We hope that in addition to making it easier
for someone to check the veracity of a particular result of interest, the
detailed computations will also be helpful in estimations of constants that
appear in various error bounds in the text. To facilitate comprehension
each chapter begins with a brief indication of the nature of the problem
treated and its solution. Notes at the end of each chapter provide some
history and references and, occasionally, additional facts. There is also
an Appendix devoted partly to some elementary notions in probability
and partly to some auxiliary results used in the book.

We have not discussed many topics closely related to the subject matter
(not to mention applications). Some of these topics are “large deviation,”
extension of the results of this monograph to the dependence case, and
rates of convergence for the invariance principle. It would take another
book of comparable size to cover these topics adequately.

We take this opportunity to thank Professors Raghu Raj Bahadur and
Patrick Billingsley for encouraging us to write this book and giving us
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iv Preface

advice. We owe a special debt of gratitude to Professor Billingsley for his
many critical remarks, suggestions, and other help. We thank Professor
John L. Denny for graciously reviewing the manuscript and pointing out a
number of errors. We gratefully acknowledge partial support from the
National Science Foundation (Grant. No. MPS 75-07549). Miss Kanda
Kunze and Mrs. Sarah Oordt, who did an excellent job of typing the
manuscript, have our sincere appreciation.

R. N. BHATTACHARYA
R. RANGA RAO

Tucson, Arizona
Urbana, Illinois
August 1975
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CHAPTER 1

Weak Convergence of Probability | =
Measures and Uniformity Classes .~

Let Q be a probability measure on a separable metric space S every open
ball of which is connected (e.g, S=R*). In the present chapter we
characterize classes & of bounded Borel-measurable functions such that

sup
fes

fra0.~ | fdQ'—>0 (n—>c0), (1)

for every sequence {Q, :n> 1} of probability measures converging weakly
to Q. Such a class is called a Q-uniformity class. It turns out that % is a Q
uniformity class if and only if
sup w,(S) < oo, lim[ sup fwf(x:e)Q(dx)J=O, )
feF el0 | reg/s
where w,(S) is the (total) oscillation of fon §, and wy(x :€) its oscillation
on the open ball of radius e centered at x. This suggests that the ap-
propriate characteristics of f on which the rate of convergence [fdQ,
—[fdQ depends are (i) w;(S) and (ii) the average oscillation function
€ [wy(x :€)Q (dx). Specialized to indicator functions of Borel sets A, this
says that the rate of convergence 0,(4)—>Q(A4) depends on the function
€—>Q((0A4)), where 34 is the boundary of 4 and (dA4)° is the set of all
points whose distances from 04 are less than €. We have pursued this line
of thinking in Chapters 3 and 4 to obtain appropriate rates of convergence
for the central limit theorem.
Section 1 contains a brief review of those aspects of weak conver-
gence theory that are relevant for proving results on characterization of

1
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2 Weak Convergence and Uniformity Classes

uniformity classes in Section 2. These two sections are not used in the
sequel (except as motivation). In Section 3 we obtain estimates such'as

sup B((3C))<d(k)e  (e>0), 3)
cee

where @ is the standard normal distribution on R*, € is the class of all
(Borel-measurable) convex subsets of R, and d(k) is a positive number
depending only on k. We have several occasions in Chapters 3 and 4 to use
these estimates for deriving rates of convergence Q,(C)—®(C), C€C,
where Q, is the distribution of the normalized sum of » independent
random vectors.

I. WEAK CONVERGENCE

In this section we briefly review some standard results in the theory of
weak convergence of probability measures.

Throughout this section S denotes a metric space with a metric p. The
Borel sigma-field % of S is the smallest sigma-field containing the clas
all open subsets of S. We say u is a (signed) measure on S if it is a (sig
measure defined on B . The clacs of all finite signed measures on
denoted by 9N, and the subcla of 9N comprising all probability m.
sures is denoted by 9. Given a finite signed measure y on S, one defines
three associated set functions p*, u=, | u|, called the positive, negative, and
total variations of p, respectively, by

pr(B)=sup{pu(4):ACB, AEDB},
p~(B)=—inf{u(A):ACB, A€ED), (BeD)  (LI)
lpl=p*+p".

The so-called Jordan—-Hahn decomposition' asserts that u* and p~ (and,
therefore | u|) are finite measures on S satisfying

p=upt—u". (1.2)

For every finite signed measure p on a separable metric space S, we define
the support of u as the smallest closed subset of S whose complement has
| u|-measure zero: that is,

support of u= N { F: F closed, | u|(S\F)=0}, (1.3)

fSee Halmos [1], pp. 121-123.



Weak Convergence 3

where for any two sets A, B we write
A\B={x:x€EA,xZB }. (1.4)

Note that the separability of the metric space S ensures that the comple-
ment of the right side of (1.3) has zero | u|-measure.

The class 9N of (set) functions on B into R' is a real linear space with
respect to pointwise addition and multiplication by real scalars. It is a
Banach space when endowed with the variation norm

lel=lpl(S)  (pEM). (1.5)

Let C(S) denote the class of all complex-valued, bounded, continuous
Sfunctions on S. The weak totopogy on N is the weakest topology (on 9NL)
that makes the maps

po [fdu  [fEC(S)] (1.6)

A m @K into the complex field C continuous. The right side of (1.6) always
>.%ds for the Lebesgue integral of (a p-integrable, complex-valued, Borel-
qurable function) f on S. The Lebesgue integral of f on a Borel set B is
oted by

'a

fB fdp. (1.7)

When it becomes necessary to indicate the variable of integration, we also
write

[ £(x) n(dx) (1.8)

instead of [fdpu.

In this monograph we are particularly concerned with the relativized
weak topology on the class & of all probability measures on S. In this
topology convergence of a sequence {Q.} of probability measures to a
probability measure Q means

lim [ fdQ,= [ fdQ (19)

for every fin C(S). The following theorem gives several characterizations
of weak convergence of a sequence of probability measures.



