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With Best Wishes to
Donald S. Passman
for his 651 birthday.



Preface

A conference in honor of Donald S. Passman, entitled Groups, Rings and Al-
gebras, took place on June 10, 11 and 12, 2005 at the University of Wisconsin-
Madison. The scientific purpose of the conference was a retroactive and proactive
assessment of those areas of algebra related to his work. These include group rings,
group theory, character theory, graded rings, enveloping algebras, group actions
on algebras and rings, Hopf algebras and certain algebras arising from the study
of noncommutative geometry. The principle speakers were Yuri Bahturin, Ed-
ward Formanek, Martin Isaacs, Martin Lorenz, Susan Montgomery, Lance Small,
Toby Stafford, A. E. Zalesskii and Efim Zelmanov. In addition, there were many
contributed talks.

The social highlights of the meetings were a candle lit soirée at the Passman’s
on Friday evening and a banquet on the ninth floor of Van Vleck Hall on Saturday
night.

Participants were invited to contribute papers. The submissions were refereed
and those that were accepted are the contents of this volume. They are in final
form and no version will be submitted for publication elsewhere.

Finally, it is our happy task to acknowledge those who made a difference and to
thank them. First, we thank our financial sponsors the National Security Agency
and the University of Wisconsin-Madison. In particular, we thank Michelle Wagner
of the NSA and David Griffeath, Chair of the Mathematics Department. The excel-
lent physical facilities in Van Vleck were provided by the Mathematics Department
and the efforts of the staff of the department, especially Mark Castillo and Joan
Wendt, were greatly appreciated.

W. Chin, J. M. Osterburg and D. Quinn

vii



Biography of Donald S. Passman

Donald Steven Passman was born in New York City in 1940. He did his under-
graduate work at the Polytechnic Institute of Brooklyn, receiving his B.S. degree
in 1960, and his graduate studies at Harvard University, receiving his M.A. in 1961
and his Ph.D. in 1964. His thesis advisor was the famous algebraist Richard Brauer.
He was an Assistant Professor at the University of California, Los Angeles (1964—
1966) and at Yale University (1966-1969). In 1969, he was appointed an Associate
Professor at the University of Wisconsin-Madison, and was promoted to the rank
of full Professor in 1971. Since 1995, he has been the Richard Brauer Professor
of Mathematics. Professor Passman has held visiting positions at U.C.L.A., the
University of Warwick, and at IDA/CCR Princeton and LalJolla.

He is the author of six books, namely:

e Permutation Groups, Benjamin, New York, 1968.
e Infinite Group Rings, Marcel Dekker, New York, 1971.
e The Algebraic Structure of Group Rings, Wiley-interscience, New

York, 1977. [Krieger, Malabar, 1985.]
Group rings, Crossed Products and Galois Theory, CBMS Con-
ference Notes, AMS, Providence, 1986.

e Infinite Crossed Products, Academic Press, Boston, 1989.
e A Course in Ring Theory, Wadsworth, Pacific Grove, 1991. [Chelsea-

AMS, Providence, 2004.]

Professor Passman works in group theory, ring theory, group rings, Hopf alge-
bras, and Lie algebras. He is the author of more than 160 research papers. His
most significant papers would certainly include:

Nil ideals in group rings, Michigan Math. J. 9 (1962), 374-384.
Group rings satisfying a polynomial identity, J. Algebra 20 (1972), 103
117.

o A new radical for group rings?, J. Algebra 28 (1974), 556-572.
e Infinite crossed products and group-graded rings, Trans. AMS 284 (1984),

707-727.

The semiprimitivity problem for twisted group algebras of locally finite
groups, Proc. London Math. Soc. (3) 73 (1996), 323-357.

The Jacobson radical of group rings of locally finite groups, Trans. AMS
349 (1997), 4696-4751.

Invariant ideals and polynomial forms, Trans. AMS 354 (2002), 3379-
3408.

One of his best puns is the title of:

It’s essentially Maschke’s theorem, Rocky Mt. J. 13 (1983), 37-54.

ix



x BIOGRAPHY OF DONALD S. PASSMAN

Professor Passman has directed the dissertations of twelve doctoral students
officially and several others unofficially. His many invited addresses include those
at the 29th British Mathematical Colloquium (invited speaker, University of Ed-
inburgh, 1977), the American Mathematical Society (invited speaker, Washington
D.C., 1979), CBMS Conference (main lecturer, Mankato State University, 1985),
and the Canadian Mathematical Society (plenary speaker, Windsor, Ontario, 1989).
He has received numerous awards for his teaching and his writing. These include
the Lester R. Ford Award (American Mathematical Society) in 1976 for his paper
What is a group ring?, and the Deborah and Franklin Tepper Haimo Award for
Distinguished University Teaching (Mathematical Association of America) in 2000.

Professor Passman continues to teach and to do research. He lives with his
wife Marjorie in Madison, Wisconsin. They have two married children and five
grandchildren. They enjoy both families: Barbara, Thomas, Samuel and Rebecca
Brownsword of Montclair, New Jersey; and Pamela, Jonathan, Abraham, Jordan
and Eve Passman of Minnetonka, Minnesota.
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Group Gradings on Associative Superalgebras.

Y. A. Bahturin and I. P. Shestakov

ABSTRACT. In this paper we describe all group gradings by a finite abelian
group G of any simple associative superalgebra over an algebraically closed
field F'. Some restrictions on the characteristic of F' apply.

1. Introduction

Let T be an abelian group, F' a field. An associative algebra A is called a T-
superalgebra if A is equipped with a grading by T', that is, A = @, At where each
At is a vector subspace of A and A*A® C A'. A subspace (subalgebra, ideal) B of
Ais called graded if B = @, (BN A"). A superalgebra A is called simple if A has
no proper nonzero graded ideals. Using other terminology, a simple superalgebra
is a graded simple algebra.

Before we start our discussion we introduce two types of gradings by groups on
the matrix algebras [4]. If A = M,,(F) the any n-tuple (g1,...,gn) of elements of
G defines an elementary G-grading of A if we define A, = Span {E;; | gi_lgj =g}.
Here E;; is usual matrix unit. Any grading obtained from this by an automorphism
of A is also called elementary.

A grading of A = M,,(F) by G = Z,, X Z, is called an e-grading, where ¢ is a
primitive n'" root of 1, if A; = Span {X,}, for any g € G. If a,b are the generators
of G and g = a'b/ then X, = X' X]. Finally,

0 1 0 - 0 0
n—1
Ty o 0 0 1 - 0 0
(1) X, = ,Xb:
0 0 0 - 0 1
o 0 -t 1 0 0 - 0 0

The mapping « : G x G — F* given by a(a’®’,a*b!) = e77% is a multiplicative
bicharacter on G and X X, = a(g, h)Xsn. The ratio 5(g,h) = a(g,h)/a(h,g) is

2000 Mathematics Subject Classification. Primary 16W20, 16 W22, 16 W50, 16 W55, 17A70,
17B70, 17C70.

Key words and phrases. Graded algebra, simple associative superalgebra, matrix algebra.
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2 Y. A. BAHTURIN AND I. P. SHESTAKOV

a skew-symmetric bicharacter and X, X, = B(g,h)Xp Xy T =11 x -+ x T,
where T; 2 Z,, X Zn,, then on A = My, (F)®- - - ® My, (F) we have a grading by T'
where the homogeneous elements are X; = X, ® --- ® Xy, for ty € Ty, ..., ¢, € Ty
and t = t;...ts. We can define bicharacters a and [ as product of bicharacters
on T, defined above and we will still have the same relations for the homogeneous
generators of A as for individual M,,,.

This grading is an example of so called fine gradings, that is, gradings of an
algebra A by a group G such that dim A < 1 for all g € G. The support of any fine
grading of A = M, (F) is always a subgroup and it was shown in [4] and [8] that
any fine grading of A = M, (F) by a finite abelian group G over an algebraically
closed field is equivalent to the grading defined just above, where T' = Supp A.
Another result of [4], [8], and [9] is that any grading of A = M, (F) by a finite
group G is equivalent to the tensor product A = C' ® D with an elementary grading
on a matrix subalgebra C and a fine grading on another matrix subalgebra D, and
Supp C N Supp D = {e}.

Notice that A = M,,(F) with fine grading by a group T' can be viewed as a
twisted group algebra F*[T] in the sense defined just below if we identify X; with
t, forevery t € T.

Going back to T-graded simple algebras, we mention that a complete descrip-
tion of finite-dimensional T-graded simple associative algebras over an algebraically
closed field F' of characteristic 0 or p such that (p,|T|) = 1 is given in [3], with
some essential information true even in the case where T is an arbitrary, not nec-
essarily abelian, group T. It is proven that any such algebra A has the form of
A = F°[H]| ® My(F). Here H is a finite subgroup of T, o a 2-cocycle on H with
values in F*, F?[H] is a twisted group algebra of H by o, with a natural H-grading.
Also, My (F) is the matrix algebras of order k over F' endowed with an elementary
grading defined by a k-tuple (¢1, ..., tx) of elements of G. As a graded vector space,
A is spanned by the homogeneous elements of the form h® F;; where F;; is a matrix
unit in My(F) while h € H is an element of the natural basis of F[H]) and the
grading of h ® E;; is t; *ht;. Additionally, H N Supp My(F) = {e}. In the case
where T' is abelian, the graded simple algebras, in a different language, have been
determined in [4].

The best known case is that of T' = Zs,, which we will call ordinary associative
superalgebras, and in this case the possible forms of A have been determined in
[11]. All simple ordinary superalgebras are either simple in the non-graded sense
or non-simple. In the former case any simple ordinary superalgebra has the form
of My, that is, the matrix algebra M, (F), n =k +, with an elementary grading
given by the tuple (0, ...,0,1,...,1) (see [4]). If A is not simple then, from the above,

—— ——

k l

A = F?[H]| ® My(F) where H is nontrivial. The condition on the support tells us
that then My (F) remains ungraded. Also, H = T, and any 2-cocycle on Z, is
cohomologous to the identity cocycle, so that F7[H| = F[T]. If ¢ is the generator
for T, then t? = e and A takes the well-known form of A = (e® My (F))®(t® My (F))
or, for shortness, A = B & tB, where B = My (F) is an ungraded matrix algebra,
t? = 1 and the grading of every element in the component B is e while that in the
component tB is .

In this paper our goal is to describe finite-dimensional G-graded simple Zo-
superalgebras R for a finite abelian group G, over any algebraically closed field F.
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First, in Theorems 3 and 4 we settle the case where R is a simple associative algebra
and then, in Theorem 6 we completely describe the gradings on superalgebras of
the form R = B @ tB. Some restrictions on the characteristic of F' are necessary
and they can be found in the statements of respective theorems.

It is traditional to denote the components of Z,-graded superalgebra by Ry and
R;, and we will follow this pattern in what follows.

2. Graded superalgebra structures on simple associative algebras. Fine
gradings

If A is simple as a non-graded algebra, then it is just the matrix algebra with
a T-grading. Assuming that A is G-graded as a T-superalgebra means that A is a
matrix algebra A = M, (F') equipped with a G x T-grading. All such gradings have
been described in [9] even when the grading group was non-commutative. This
approach does not allow to single out in the grading obtained the original G or
Zo-grading. Thus instead we proceed as follows.

Let G be a finite abelian group, R = M,,(F') a matrix algebra over an arbitrary
field F of characteristic different from 2. Suppose that the superalgebra structure
on R is given by an automorphism 7 of order 2. Whatever basis chosen, 7 is given
by 7o X = &1 X®, for an appropriate nondegenerate matrix ® of order n.

Now we assume that R is given a G-grading compatible with this superalgebra
structure. This means that for any g € G we have 7 o Ry = Ry. In other words, is
R = R @ Rj is the superalgebra decomposition of R then

Ry = (R4 N Ry) @ (Ry N Ry), for any g € G.

Since any grading of R as an associative superalgebra is also a grading of R
as an associative algebra, we have by [4] that R = R(®) @ R(Y) where each tensor
factor R(®), respectively, R") is a matrix algebra with an elementary, respectively,
fine grading. This suggests that in our searches of possible gradings on a matrix
algebra R = M,,(F'), compatible with a superalgebra structure, we should look first
at the cases where R is with one of these two gradings. An important formula is
this: My, ® My s = Myr4is ks+1-- This allows us, given a superalgebra structure
on M, (F), which is determined by a partition n = p + ¢, p,q > 0, to proceed
as follows. First, we find all elementary G-gradings on some Mj; and fine G-
gradings on M, 5, whose supports intersect trivially. If p = kr 4+ ls and ¢ = ks +Ir
than the tensor product of the previously determined gradings will give us a G-
grading on M, ,. (We also have n = p+ q = (k +{)(r + s). One could also write
n=p+ag=(k+al)(r +as), where a? = 1.) As usual, we would have

(Mi)o @ (Mr,5)5) © (Mi)1 © (My,5)1) = (Mir1s ks+1r)o
while
(Mk )5 ® (Mrs)1) ® (Mi)1 ® (Mrs)o) = (Miris,kstir)1-

Let us start with the case where the grading on M,,(F') is fine and compatible
with a Zs-grading R = Ry @ Ri. It follows from a very general lemma in [4] that
the support H of this grading is a subgroup of the grading group G. Thus we
have R = @,y Rn and R, = (X}), for a nondegenerate matrix X. Let us also
recall that the product in R = M, (F') with fine grading as above is defined by a
bicharacter o : H x H — F* as follows: X3, Xy = a(h, k)X, for any h,k € H. The
commutation relations in R take the form X, Xy = B(h, k)X, X}, where 8(h, k) =
a(h,k)/a(k,h) is a skew-symmetric bicharacter (see [2]).



4 Y. A. BAHTURIN AND I. P. SHESTAKOV

It follows from the compatibility condition that there exists a subset Hy C H
such that Ry = @y, Br and R = @j¢p, Ba- Since RgR; C Ry we have that
Ry = RyRr C Ry for any h,k € Hy. Since we deal with finite groups, it follows
that Hj is a subgroup. If there is g € H \ Hy then using similar argument we easily
derive that H = HqoUgH, proving that Hy is a subgroup of index 1 or 2. If H = Hj
then R = Rg, that is, the superalgebra structure on R is trivial. If R = R(®) @ R()
as before, and the superalgebra structure on R() is trivial then R5 = (R(®))5® RM)
while R; = (R(®); ® RV, Thus, in the case where the G-grading is fine, everything
is determined by a subgroup Hj of index 2 in H = Span { R} and the superalgebra
structure is given as follows:

(2) R5 = Span {Xy|h € Hyp} and Ry = Span {Xp|h ¢ Ho}.

Obviously, this latter formula defines a Zs-grading on any algebra with fine grading,.
Since dim Rz = dim Ry it follows that with such a grading we have n = 2m, for
some m, and our superalgebra is isomorphic to M,, . Now if we denote the G-
graded superalgebra just introduced by P(H; Hy; «) then the following theorem is
true.

THEOREM 1. Any G-graded associative superalgebra R which is a finite - di-
mensional simple algebra M, (F) whose G-grading is fine is isomorphic to a super-
algebra P(H; Ho; @), for an appropriate subgroup H C G of order n?, a subgroup
Hy C H of index at most 2 and a bicharacter o on H.

Notice that in [8] the reader can find information about the cases where the
matrix algebras admit fine grading and their description. The connections with the
bicharacters can also be found in [2].

3. Graded superalgebra structures on simple associative algebras.
Elementary gradings

The material of this section is to a large extent reminiscent of the respective
parts of [1], where we deal with involution gradings of matrix algebras.

Following the argument in [10], we write the n-tuple, which defines our ele-
mentary grading, as 8 = (g§k1), fos ,gf,’f"')) where g; # g; for i # j, k1,...,km > 0,
ki +---+knm =n. The k-tuple (ki,..., k) defines a partition of the matrices in R
into blocks as indicated below. We also recall that 7 is the “structural” automor-
phism of R = M,,(F') as a Zy-superalgebra.

Let us set

ei1=En+-+Eiqk,-8m=FErp 41,k 41+ -+ Frp ks

where the E;;’s are the usual matrix units. Then €y,...,&,, form a system of
pairwise orthogonal idempotents of R with 1 =1+ --+¢,,. Let us set A; = ¢; Re;,
which is the i-th diagonal block and let us write A = A; & --- ® A,,, which is the
identity component R. of the grading we are dealing with. By our hypothesis,
7oA =A. Let us write 7 on R as 7(X) = ®~1 X .

Since 7 is an automorphism of A we have that 7(A4;) = As ) for a suitable
permutation o of 1,2,...,m. Let ¢ be the inner automorphism of R given by
conjugation by the permutation matrix S which permutes the blocks A; according to
o. Therefore the automorphism x = ¢ ~'7 leaves every block A; invariant y(4;) =
Ai,'i: 1,...,m.
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Now the restriction of x to A; is an automorphism of this matrix algebra so
that there exists a k; x k;-matrix T; such that x(X) = Ti_1 XT, for any X € A;. If
we let T = diag(T1, ..., Tm), then the action of 7 will coincide with conjugation by
TS. Thus the conjugation by ® and T'S coincide on A.

If ¥ =®&!17TS and ¥ = [¥;;] then for any X = diag(Xi,...,Xm) € A we have
XV =UX or X,‘\I/i]‘ = \I/inj for any 1 < 1,7 < m. If i = j then X;¥;; = . X;
and it follows that ¥;; = \;I is a scalar matrix, for some nonzero scalar \;. If
i # j then choosing X; = I, and X; = 0 we immediately obtain ¥;; = 0. So
U = diag(M1x,,- .-, Amlk,, ) is a diagonal matrix. Since ® = T'S¥~Y it follows
that ® = [®;;] is a block matrix such that in each column of blocks and in each
row of blocks we have exactly one nonzero square block 7;.

Now we should remember that 72 = 1, that is, the conjugation by ®?2 is trivial.
In other words, ®2 = uI, for an appropriate nonzero scalar u. This means that the
above permutation o is the product of independent cycles of length 2. Therefore,
permuting the whole blocks, we may assume that ® has the form of

_ . 0 U 0 U
o vrona{[ 2 %] & % ]
where s + 2r = m. Recalling ®2 = I we obtain
I =diag {UL U], U0y oo« s UpU; Ul V200 V2 }

It follows then that U} = U ',...,.U. = U7, V2 = I,...,V2 = I. Thus the
conjugation by ® is the same as that by

I 3 0 Ul 0 UT
¢_d1ag{|:U1_1 0 },...,[Ur_l 0 :|,V1,...,V9,}.

Now let us notice that the elementary grading preserves if we conjugate ®' by
C =diag {C1,C},Cr,CL,Dy,...,D,},
with the same splitting into blocks. We will then have

- 0 ERe
'9'C = di 1R ] s
C dla’g (C{)_lUl_lcl 0 3 )
0 e 2 o _
[ (Cl)—lU—IC " 0 :|aD1 1‘/1D1,.4.,Ds IVsta}-
T T T
If we choose appropriate C1, ..., Ds then we can reduce @’ to the form of
3)
. 0 I 0 I I 0 I 0
d" = k2 1oL kar 21 Ps
dlag{[lkl 0 ]’ ’[Ik%—l 0 :|,[ 0 _Iql]’“.,[ 0 _Iqs]}’
where kgr+1 =p1+q1,--.,kar+s = Ps + s and of course k1 = ko, ..., kor_1 = kor.
Let us call the blocks 0 I the blocks of the first kind while fp D
I, 0 0 -1,

the blocks of the second kind. We want to show that if 7 is compatible with an
elementary grading then the respective conjugating matrix ®” cannot have both
blocks of the first and the second kind.

Indeed, consider any block matrix X all of whose blocks except X 2r41 are
zero. This matrix is homogeneous with respect to our grading and its degree is
gl_1927-+]_. If we apply 7 then Y = ®~! X® will be a matrix in the second row of
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blocks and still the 2r + 1 column of blocks. Thus the degree of Y will be g5 1 G2r+1,
which implies g; = g»2, a contradiction.

Thus there are two cases: the first, where ®” has only blocks of the first kind
and the second, when it has only blocks of the second kind.

Suppose we have only blocks of the first kind. Then m = 2r and the defining

tuple has the form 0 = (g§k1),g§kl) . ..,géﬁz_"f‘),géfz"”)) where g; # g; for i # j,

ki,...,kor_1 > 0. However there are some relations between the components of 6.
For example if in X as above, only the block X, is nonzero then in Y = 7(X) only
the block Y, is nonzero. This implies g7 'g2 = g5 'g1, or (97 'g2)? = e. Similarly,
(95'94)% = ... = (95" 192-)? = 1. Also, if X is in row 2¢ — 1 and column 2s—1 then
Y = 7(X) is in the row 2t and column 2s, which implies g5," ;g2.—1 = gf_,_tlggs. Quite
similarly, g5;% 1925 = go; G2s—1, Gor G25—1 = G- 192s, and g5, g2s = g5; 192s—1-
Obviously, we need only two of these latter relations g{tl_l go2s—1 = gz_zl gos and
g{tl_lgzs = g;tl g2s—1, for all possible choices of s and t. A quick analysis shows that
these conditions are equivalent to the following ones. There exists in H an element
h of order 2 such that go; = goy_1h forany t =1,...,7r.

Notice, that in this case we obtain n = 2/ and the superalgebra grading on R =
M, (F') is defined as follows. We should consider splitting matrices into the blocks
of sizes (2k1,2ks, ..., 2k2.—1) by merging the first and the second rows (columns)
of blocks,..., the (2r — 1)t and the 2r*® rows (columns) of blocks. Then in the
intersection of each doubled row and column there is a matrix [ A B ] If all

C D

B :| then X € Ry. If all

these submatrices of some matrix X are of the form [ B A

submatrices have the form g ii then X € R;. We will call the G-graded
superalgebras as just described the G-graded superalgebras of the first kind and
denote by Q(6;h). It is easy to observe that in the case of such superalgebra R we
have dim R = dim Ry, that is, as a (non-graded superalgebra) R is isomorphic to
M, . where n = 2m, for some integer m. Another important observation is that
RoNRe = My, ® Mg, - & My,,_,.

In the second case we will have

" =diag{Iy,, —Ig,.. -, Ip,.,— 1, }-

Since the conjugation by a diagonal matrix does not change the position of the
blocks there are no restrictions on the elements of the tuple 6. As superalgebra, R
is isomorphic to Mp, 1...4p,. q1+--+q,.- Lhe structure of Rz and Ry is the following.
Each row of blocks and each column of blocks is split into two by partitions &k, =
P1+41,. ..y km = Pm+qm. Thus in each position ij of the original splitting into the

blocks we will find a block matrix X;; = [ A 8

c DI A matrix X is in Rj if each

Xi; has the form X;; = [ 61 g :l A matrix X is in Ry if each X;; has the form
Xi; = g g :l If we denote by p the vector p = (p1,pa,-..,pm) then we will

denote the G-graded superalgebra just defined by A(6;p). In the case R = A(0;p)
we have RN R, = M, @ My, &---d M, & M,,.

m
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Notice that, as G-graded superalgebras, none of the superalgebras Q(6; ) is iso-
morphic to any of A(6; p). Indeed, as noted at the beginning of this section, the iden-
tity component of the elementary grading defined by a tuple (6 = (g§k1), S g,(,’f’"))
where g; # g; for i # j, k1,...,kpn > 0 is isomorphic to Mk, & - -- & My,,, that is,
has m simple components. So, if two superalgebras R; and Rg, one from the first
family and the other from the second one, are isomorphic as G-graded superalge-
bras, then their defining tuples must have the same number components, say, m. It
is immediate that m = 2[, for some /. But then the number of simple components in
(R1)5N (R1)e, as mentioned, above, is I whereas for the second algebra this number
can be anything between m = 2! and 2m = 4l.

Now we can formulate the main result about the elementary gradings of asso-
ciative superalgebras which are simple associative algebras.

THEOREM 2. Let G be an arbitrary finite abelian group, F an algebraically
closed field of characteristic different from 2, R a G-graded finite-dimensional as-
sociative superalgebra which is simple as an associative algebra, whose grading is
elementary. Then as a G-graded superalgebra R is isomorphic to one of the algebras

Q(0; h) or A(6;p).

4. Graded superalgebra structures on simple associative algebras.
General case

In this section we are very close to [7]. Suppose an algebra R is equipped
with an automorphism ¢ and S is a p-invariant subalgebra of R. We say that S is
@-simple if S has no p-invariant ideals different from S and {0}.

LEMMA 1. Let R=C® D = @, Ry be a G-graded matriz algebra M, (F)
with an elementary grading on C and fine grading on D. Let ¢ be a G-graded
automorphism of R, whose restriction to Re is of order 2. Let E denote the identity
element of R. Then

(1) Re =C. ® E is a p-invariant subalgebra of R.
(2) There are p-simple ideals By, ..., By, of Ce such that Co = B1®...® B,,.
(3) The action of ¢ on R, is a conjugation by an n X n-matriz S = S; ®

E+ ...+ 5, ®FE where S; € B;CB; and either S; = [Igl (} ]’
e
0 I

pi+qi:ki ZfBngkz OTS,;:l:Ik 0 ];ifBing,®Mk1-

(4) The centralizer of R. in R decomposes as Zy QD1 ®...® Z,, ® D,,, where
Dy, ..., Dy, are p-invariant subalgebras isomorphic to D and Z; = Z|Q FE
where Z; is the center of B;.

(5) If one of B; is simple then all of them are simple and in this case both C
and D are p-invariant.

Proof. Since D, = Span{E} and SuppC N Supp D = {e}, it follows that R, =
C.® E. Since ¢ respects the G-grading, it follows that p * (Ce ® E) = C. ® E, that
is, Ce® F is yp-invariant. We have already seen at the beginning of Section 3 that C.
decomposes as the sum of ideals By, ..., B, each of which is p-invariant, in other
words, each B; is ¢-simple. Now it is well-known that with respect to an appropriate
basis, the structural map ¢ of a simple superalgebra has one of the form indicated
in Claim (3). Claim (4) is a simple exercise. As for (5), this is the same argument
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as in Section 3: if, say, B is simple and Bs is not then B; = P @ (). The degree
of any element in BiCP will be g7 1go. Now ¢ maps Bj into itself and changes
places of P and Q. Therefore, BiCP is mapped into BiRQ = B1CQ ® D. The
degree of a homogeneous element in BiCQ ® D is g; Lgst for an appropriate t € T
Since ¢ should respect the degree, we must have g5 lgy = t. Here g3 lg, € SuppC
(this is the degree of any element in QCP) and so we must have ¢t = 1 and go = g3,
a contradiction. Now the same argument shows that if B; and By are simple, we
must have B;C By mapped into itself. Thus if at least one of B; is simple then by
the above all of them are simple and then C' =}, ; BiCB; is p-invariant. In this
case also D, which is the centralizer of C in R, has to be p-invariant, and the proof
of Claim (5) is complete. O

The above Lemma applies to graded superalgebras because they are defined by
a G-grading and a G-graded automorphism ¢ of order 2. Claim (5) of Lemma 1
shows that the situation where the elementary and fine components of a G-grading
are subsuperalgebras arise quite naturally. Thus this is an appropriate place to
formulate the following result. The proof is a combination of what we have obtained
in Sections 2 and 3.

THEOREM 3. Let G be an arbitrary finite abelian group, F' an algebraically
closed field of characteristic different from 2, R a G-graded finite-dimensional as-
sociative superalgebra which is simple as an associative algebra. If fine and ele-
mentary components of R as a G-graded algebra, are subsuperalgebras then, as a
G-graded superalgebra, R is isomorphic to a superalgebra of one of the following
two classes:

(1) Q(6;h) ® P(H; Ho; a);

(2) A(6;p) ® P(H; Ho; ).
The parameters used are defined in Theorems 1 and 2. None of the superalgebras of
one of these classes with a nontrivial tuple 6 can be isomorphic to a superalgebra in
the other class. The G-grading and Za-grading on the tensor products are defined
canonically.

The nonisomorphism claim follows in the same way as in the proof of Theorem
2 because the “identity” components R, and R.N R of the general R are the same
as of its elementary factor.

Now we have to consider the case where the subalgebras C' and D are not
subsuperalgebras. Let us consider the decomposition C, = B; @ ... & B,, found in
Lemma 1. In this case, as we have seen before, all By, ..., B, in the decomposition
of C, are not simple as associative algebras. Let us write (B;)e = P ® Q;. In
this case also the defining tuple of the elementary grading on C has the form

0= [g%kl), hgkl), e ,g,(,’f’"), h£,’fm>]. Let e; be the identity element of P; and f; the
identity of Q;. Then the identity of B; will be E; = ¢; + f;.

The action of ¢ on R is defined by the rule ¢ * A = &1 A® for some matrix
®,AcR IfAcC.then A=A QE+...+ A, ®E where A; € B;, 1 <i<m.
By Lemma 1 ¢ acts on A as px A = S~ AS where S =S ®FE+...+ S, ® E

with S; € B;CB; and S; = [ 12 [3" ], if B; is identified with My, & My,. Hence

$S~! commutes with any A € R, and so is an element of the centralizer of R, in
R, which was determined in Claim (4) of Lemma 1. Thus we have



