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AUXILIARY POWER SYSTEM FOR THE DIABLO CANYON NUCLEAR PLANT

Donald Nielsen
Pacific Gas and Electric Company
San Francisco, California

ABSTRACT

This paper describes the auxiliary electric power system for the
Diablo Canyon Nuclear Plant of the Pacific Gas and Electric
Company. The power systems covered are the medium and low
voltage distribution systems, the standby and startup systems, and
the emergency and engineered safety features systems. Also covered
are the selection of voltages, methods of neutral grounding, and
automatic transfer to standby power. A discussion is also included
for the systems with the largest loads: the main condenser cooling
water system and the reactor coolant system.

INTRODUCTION

The Pacific Gas and Electric Company is currently building a
large nuclear power plant at the Diablo Canyon site. The site is on
the Pacific Coast in San Luis Obispo County, California. The plant
will have two large generating units; the estimated electrical output
rating is 1084 mW for Unit 1 and 1106 mW for Unit 2. The units
have pressurized water reactors and 1800 rpm single shaft turbine
generators. The generators are hydrogen cooled and have water
cooled stators and brushless rotating rectifier type excitation systems.
The general plant layout is shown in Figure 1.

The plant electric power systems consist of the output from the
main generator and an auxiliary power system composed of 12,000,
4,160 and low voltage systems of 480 volts and 120/208 volts. All of
the auxiliary power systems buses can be fed from either the main
generating unit or from the standby-startup off-site power source.
The emergency power system can also be supplied by engine-
generators.

AUXILIARY ELECTRIC POWER SYSTEMS

The plant auxiliary loads are supplied by the auxiliary power
system shown by the single line diagram in Figure 2. Some of the
loads are large and required a new approach to the system design.

Medium and Low Voltage Power Systems

The 12,000 volt system has two buses per unit, each bus with
one 13,000 hp condenser circulating water pump and two 6,000 hp
reactor coolant pumps. The switchgear is of the indoor metaclad
type with vertical lift circuit breakers rated 13.8 kV, 80,000 asym-
metrical amperes momentary and 750 mVA interrupting capacity.

The 4,160 volt system has five buses, two that serve balance of
plant equipment and three that serve the nuclear engineered safety
features and other emergency loads. The latter three buses are also
each served by an engine-driven generator. The switchgear is also of
the same type, and is rated 4.16 kV, 80,000 asymmetrical amperes
momentary and 250 mVA interrupting capacity.
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The engineered safety features and other emergency services are

. fed from three 4,160 volt buses, each supplied by an engine generator

as well as the normal off-site and main unit power sources. Nuclear
safety-related loads have been grouped to meet single failure criteria.
The low voltage engineered safety features and emergency services
are fed radially and independently from their corresponding 4,160
volt bus through a transformer coupled to a motor control center.

Standby and Startup Power System

The standby-startup system serves as a source of electric power
both for startup and for standby during normal operation. It consists
of two outdoor, oil filled, three phase transformers, rated 45/60/75
mVA OA/FOA/FOA, each fed at 230 kV from the off-site power
source and serving two 12,000 volt buses, one for each unit. These
two 12,000 volt buses are connected together by a circuit breaker
that is normally operated open. In case of trouble in one transformer,
this breaker can be closed manually to restore off-site power to the
affected unit through the other transformer. Standby-startup power
is fed tothe 4,160 volt and low voltage systems through a transformer
supplied from the 12,000 volt system.

Unit Auxiliary Power System

The main generating unit supplies power at 25,000 volts to the
auxiliary power system through two transformers, one to 12,000
volts and the other to 4,160 volts. The power transformers are out-
door, oil filled, three phase units; the one serving the 12,000 volt sys-
tem is a two winding delta-delta unit rated 33.75/45/56.25 mVA
OA/FA/FA, and the one serving the 4,160 volt system is a three
winding (two 4,160 volt windings) delta-wye unit, rated 24/32/40
mVA OA/FA/FA. These same transformers can supply the auxiliary
power from the 500 kV system when the main generating unit is out
of service by opening a disconnect switch in the generator isolated
phase bus and re-energizing the main transformer. This disconnect
switch is manually controlled from the main control room.

Normal Operation

During normal steady-state operation, the main generating unit
is operated on the “unit” principle, supplying all of its own auxiliary
power. While it is operating normally, the main generating unit is
considered its own best power source, and is less vulnerable to disturb-
ances in the off-site power sources. The standby-startup power system
will be operated in a standby state, and the diesel generators will be
shutdown, except if electric power system capability is degraded,
the engine generators will be operated as required by IEEE Standard
308.

The main generating unit auxiliaries will be started up from the
standby-startup power system. After the unit has been synchronized
with the 500 kV system, the auxiliary loads will be transferred manu-
ally, one bus at a time, fo the main unit by momentarily paralleling
the off-site and main generator systems. Normal shutdown will use

.

the reverse procedure. »
Emergency Operation

Emergency shutdown of the main generating unit, including the
reactor, will cause all of the auxiliary power systems to be transferred
to the standby-startup, off-site power source, if available, and will
start the diesel generators. If this source is not available, the emer-
gency loads will be automatically transferred to the diesel generators
in a sequential manner.



Emergency Power System

The emergency power systems serve loads at 4,160, 480 and
120 volts ac and at 125 volts dc.

The 4,160 volts system has been divided into three load groups
to provide redundancy and to be within the capacity of the diesel
generators. Two diesel generators for each unit are sufficient to carry
the emergency loads that are required for safe operation under nor-
mal and accident conditions. One of the diesel generators is common
to both main generating units, and is transferred automatically to the
main unit which requires actuation of safety features.

Automatic transfer of the emergency loads to the off-site or
diesel generator sources is initiated by either a main unit trip, an
actuation signal from the reactor protection system, or from loss of
4,160 volt vital bus potential. Loads are started in a sequence with 5
second intervals to prevent inrush overload on the diesels. Each motor
has an individual independent adjustable time delay relay to permit
each load to act independently of the others.

With the three bus system, single failure will result in only a
partial loss of redundancy, because most of the loads are of the one
out of two type of redundancy. Depending on their bus supply, some
will not be interrupted at all upon failure of one bus or sources.
Some loads have a two out of three or a three out of five configura-
tion and these require all three sources to meet single failure criteria.

The diesel generators are self-contained units, housed indoors at
ground level in individual rooms at the end of the turbine generator
building. The diesel generators have a net electrical output rating of
2,600 kW continuously and 2,750 kW for 2,000 hours per year. The
generator is air cooled and is rated 3,250 kVA, 0.80 power factor,
4,160 volts, 60 hertz, three phase 70° C temperature rise. The insula-
tion is class B and the enclosure is drip proof. The transient reactance
is 14.6 percent, and the subtransient reactance is 8.4 percent. The
exciter is a static series transformer type controlled by a static voltage
regulator.

During the starting sequence for the safety related loads, these
machines can carry the short time overloads caused by transients and
starting currents and still maintain the electric power frequency with-
in 5% and hold the voltage to a minimum of 75% and recover to
100% in one second.

The diesel engine is a heavy duty, four cycle, turbo-charged,
stationary unit, rated 3,691 horsepower, 900 r/min. The engine is
water cooled and has an integrally mounted radiator with an engine
driven fan for cooling the engine jacket water.

Each diesel generator has two air motor starting systems, and is
capable of reach rated voltage and speed within 10 seconds. With one
air motor operative, this time is 12 seconds.

Control, Protection and Instrumentation Electrical Systems

The 125 volt dc system has been divided into three groups for
each unit to match the divisions of the emergency ac system. Each
group consists of a set of 125 volt battery chargers and switchgear.
Spare chargers are provided, with two of the buses sharing one spare
charger, and the third bus has its own spare. Each charger is fully
capable of carrying the maximum load on its bus as well as providing
recharging of the battery should it have been discharged. The batter-
ies have the capacity to supply their loads for the duration required
even without allowance for the diesels immediately relieving some of
the load. Two pairs of batteries are coupled between the two units to
provide 240 volts dc for lubricating oil pumps.

Nuclear instrument and protection systems which require ac
power are fed from electric power inverters, one for each protection

channel, for a total of four. These inverters will automatically derive
their power from either the batteries or the diesel-generators, with-
out any switching. Although there are four such systems, only
three are required to meet the single failure criteria and also to pre-
vent an erroneous safety action from the failure of a single instru-
ment. The inverters are arranged on the buses so that they match
the three bus schemes of the ac and dc vital power systems.

Neutral Grounding

The neutrals of the auxiliary electric power systems are high
resistance grounded. The maximum power expended in the resistors
has been made equal to the capacitive current flowing when one
phase is grounded. This minimizes the transient voltages caused by
arcing grounds and at the same time limits damage caused by current
flow. On the 12 kV system, the maximum current will be limited to
35 amperes, and on the 4,160 volt system, the current is held to 7
amperes. The grounding resistors are of the high voltage type, and
are installed in the secondary side of the standby-startup and the unit
auxiliary transformers. The 12,000 volt system uses a zig-zag trans-
former as a grounding bank.

Ground faults for each motor and transformer is detected and
alarmed. Ground tripping is not used so that service can be main-
tained until the equipment can be removed from service with less
disturbance to the power system.

Voltage Ratings of Large Motors

The large motors required for this project made it necessary to
use an operating voltage higher than has been usually used in our
power plants. We decided to use standard metalclad switchgear, to
start the motor directly across the line, and to limit voltage drop on
motor starting to 15%. With the 13,000 horsepower motors, this
requires a voltage between 11,500 to 13,800 volts because of the
limitations of interrupting ratings standard lower voltage metalclad
switchgear. 11,500 volts was selected because it is within the rating
range for normal operation of 13.8 kV switchgear and yet it required
the minimum increase in physical size and cost of the reactor coolant
pumps.

Automatic Transfer of Auxiliary Loads

Our normal practice is to delay transfer of electric motors until
their residual voltage has decayed to 25% of rated value before reclos-
ing. This practice eliminates any need for concern for the phase angle
between the voltages of the source and the motor during reclosing.
This angle is a function of the initial phase angle difference and the
deceleration of the motor during its power interruptions and above
25% residual voltage this angle should be below 60° to avoid exces-
sive stresses on the motors upon reclosure. Because three factors are
difficult to foresee and control, we have adopted the voltage decay
method even though it may cause more disturbances to the loads.

There is one exception — the reactor coolant pumps. To cause
the least upset to the reactor coolant flow, the reactor coolant pumps
will be transferred with a minimum of power interruption, only the
time required to close one circuit breaker upon the trip of the other,
or about 0.15 second. The reactor coolant pumps have flywheels to
raise the total inertia to 3,455 kilogram-meterZ, resulting in a H iner-
tia constant of 4.92 kW-sec/kVA. This makes it possible to make a
fast transfer and as well as to provide adequate reactor coolant flow
on coastdown following a prolonged power failure. Figure 3 shows
25° during a 0.15 second interval of no power. Figure 3 is based on
typical induction motor characteristics and load torque that varies as
the square of the speed, typical of centrifugal loads such as used here.
The equations for Figure 3 were derived by analytic mechanics from
the fundamental laws of motion and show that the retard angle is a

function of the H inertia factor and load torque in per unit values.
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On the other hand, the condenser circulating water pumps and
motors have a total inertia of 65,950 kilogram-meter?, but because
of their size and speed, the H inertia constant is only 1.57, much
lower than that of the reactor coolant pumps. Because the motors
are large and slow, it would be uneconomical and impractical to raise
the inertia of these pumps by adding mass to get more flywheel
effect. With this lower inertia, the phase will retard about 85° and
this can cause excessive inrush currents. Therefore, these motors have
transfer delayed until the residual voltage drops to 25%. This interval
is a function of the open circuit time constant of the motor, about
0.654 second in this case. The speeds of the pump during coastdown
are shown in Figure 4, which shows that the motor speed will still be
above 80% of rated speed during the time interval of 0.80 second, to
reach 25% speed, enough to make recovery to normal speeds easily.
Figure 4 is based on the same factors as for Figure 3.
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Lastly, a brief description of the two systems with the largest
electric motors and, therefore, with great influerice on the design of
the auxiliary power system follow:

Condenser Cooling Water System

Because this plant has a ground elevation 85 feet above sea level
and a large amount of sea water, 54,690 liters per second (867,000
gallons per minute) is needed to cool the main condenser, the power
required for the circulating water pumps is 26,000 horsepower for
each unit. Two pumps are used for each unit, each driven by a
13,000 horsepower, 3.96 r/s (237.7 r/min.) vertical shaft, water
cooled squirrel cage induction motor, the largest of this kind in ser-
vice. These motors are rated 11,500 volts and have a power factor of
about 81%. The rotor of the motor has a diameter of 3.83 meters, a
thickness of 1.21 meters, and has a mass of 32,886 kilograms. The
rotor and pump impeller are direct coupled, and are supported by
the motor thrust bearing of self-aligning sliding-shos Kingsbury type
immersed in oil cooled by water.

These motors can withstand a speed of 5.25 r/s (315 r/min.),
the maximum runaway speed in reverse while water is draining from
the conduits after a shutdown.

These motors are squirrel-cage induction-type and are started
directly across the line start without any need to dewater the pump.
However, starting is prevented while the rotor is running in reverse
above speeds of 5 r/min. to prevent an excessive starting period.
From a standstill, these motors reach full speed in only 8 seconds.
Starting current inrush is about 5 times the rated value.

Synchronous and induction motors were evaluated for this appli-
cation. The induction motors were selected based on lower original
cost, comparable efficiency, and simpler starting and reclosure charac-
teristics. The cost of these motors were also a factor considered in
the evaluation of the elevation of the plant.

At this time, the condenser cooling water is returned to the sea
through a series of energy dissipating cascades in the discharge struc-
ture. Originally, hydro-generation was considered for this purpose.
But, at that time —in the late nineteen-sixtees — the costs were
unfavorable. Also, the prevention of corrosion of the hydraulic tur-
bine and its related chambers when exposed continuously to sea
water became very costly and difficult to achieve. However, with the
increase in value of energy and the advancement of techniques to pre-
vent corrosion, we are again evaluating the use of a hydro-generator
at Diablo to recover some of the energy, about 12,500 kW per unit,
from the falling condenser cooling water.

Reactor Coolant System

The reactor coolant system provides reactor core cooling ade-
quate at all times to maintain a margin against boiling, or a DNBR of
1.3 or greater. The flow is provided by four reactor coolant pumps,
designed to pump high temperature (about 300°C average) reactor
coolant in large volumes (5,580 liters per second for each pump) at
high pressure (2,250 pounds per square inch absolute). The pumps
require 5,449 horsepower when the coolant is hot, and 7,241 horse-
power when it is cold.

The pumps are driven by squirrel cage induction motors, of the
air cooled, vertical shaft type, rated 6,000 horsepower, 19.7 r/s
(1,180 r/min.). The insulation is class B. Atop each motor is a steel
flywheel, 1.91 meters in diameter and 0.33 meters thick, with a mass
of 5,820 kilograms.

The motors have segmented pad type radial bearings and Kings-
burg type thrust bearings. The motors have ratchets to prevent
reverse rotation should one be shutdown while the others are running.

The motor can withstand an overspeed of 125%. To reduce over-
speed and to maintain coolant flow for a short time following a reac-
tor or turbine tup, the reactor coolant pumps, the main generator
and the transmission system remain connected for 30 seconds before
the generator is tripped off the line.
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