Cambridge studies in advanced mathematics 26

Clifford algebras
and Dirac operators

in harmonic analysis




ciigrora WM ., iy

30805416

operators in harmonic analysis

JOHN E. GILBERT

University of Texas

MARGARET AM. MURRAY

Virginia Polytechnic Institute and State University

¥ WK hA
o = " The right of the

University of Cambridge
to print and sell
all manner of books
was granted by
Henry VIII in 1534.
The University has printed
and published continuously
since 1584.

CAMBRIDGE UNIVERSITY PRESS

Cambridge
New York Port Chester
Melbourne Sydney



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sido Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521346542

© Cambridge University Press 1991

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1991
This digitally printed version 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-34654-2 hardback
ISBN 978-0-521-07198-7 paperback



CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 26

Editorial Board
D.J.H. Garling, D. Gorenstein, T. tom Dieck, P. Walters

30805416

Clifford algebras and Dirac operators in harmonic analysis



Already published
1 W.M.L. Holcombe Algebraic automata theory

2 K. Petersen Ergodic theory

3 P.T. Johnstone Stone spaces

4  W.H. Schikhof Ultrametric calculus

5 J-P. Kahane Some random series of functions, second edition

6 H. Cohn Introduction to the construction of class fields

7 J. Lambek & P.J. Scott Introduction to higher-order categorical logic

8  H. Matsumura Commutative ring theory

9  C.B. Thomas Characteristic classed and the cohomology of finite groups
10 M. Aschbacher Finite group theory
11 J.L. Alperin Local representation theory
12 P. Koosis The logarithmic integral: I
13 A. Pietsch Eigenvalues and s-numbers
14 S.J. Patterson An introduction to the theory of the Riemann zeta-function
15  H-J. Baues Algebraic homotopy
16  V.S. Varadarajan Introduction to harmonic analysis on semisimple Lie

groups

17 W. Dicks & M.J. Dunwoody Groups acting on graphs

18 L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and
their applications

19 R. Frisch & R. Piccinini Cellular structures and characters of finite groups

20  H. Klingen Introductory lectures on Siegel modular forms

22 M.J. Collins Representations and characters of finite groups

24 H. Kunita Stochastic flows and stochastic differential equations

25  P. Wojtaszczyk Banach spaces for analysts

26 J.E.Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in
harmonic analysis

28 K. Goebel & W.A. Kirk Topics in metric fixed point theory

29  J.E. Humphreys Reflection groups and Coxeter groups

30 D.J. Benson Representations and cohomology I



To
Vicki Gilbert,

for her love, patience, and understanding,

and to
Magdalene K. Murray,

for her courageous and independent spirit.



© 00O O W

UL W N~

Contents

Introduction

Chapter 1 Clifford algebras
Quadratic spaces

Clifford algebras

Structure of Clifford algebras
Orthogonal transformations
Transformers, Clifford groups
Spin groups

The Euclidean case

Spin(V, Q) as a Lie group

Spin groups as classical Lie groups
Notes and remarks for chapter 1

Chapter 2 Dirac operators and Clifford analyticity
Cauchy-Riemann operators

Dirac operators past and present

Clifford analyticity

Spaces of analytic functions

Spaces of Clifford analytic functions I: the upper
half-space

Cauchy integrals and Hilbert transforms on Lipschitz
domains

Spaces of Clifford analytic functions II: Lipschitz domains
Notes and remarks for chapter 2

co O U =

22
32
38
46
49
65
77
85

87
93
97
108

119
125

135
140



vi Contents

Chapter 3 Representations of Spin(V, Q) 143
1 Elements of representation theory 144
2 Signature, fundamental representations 147
3 Class 1 representations 164
4 Polynomials of matrix argument 173
5 Harmonic polynomials of matrix argument 193
Notes and remarks for chapter 3 201
Chapter 4 Constant coefficient operators of Dirac
type 203
1 First-order systems: some general results 203
2 Operators of Dirac type 208
3 Rotation-invariant systems 213
4 The operators é, 220
5 Critical indices of subharmonicity 232
Notes and remarks for chapter 4 244
Chapter 5 Dirac operators and manifolds 247
1 Local theory 248
2 Global theory 263
3 Dirac operators on hyperbolic and spherical space 272
4 Representation theory for Sping(n, 1) 284
5 Asymptotics for heat kernels 296
6 The index theorem for Dirac operators 309
Notes and remarks for chapter 5 317
References 321

Index 328



Introduction

In this book we present a comprehensive introduction to the use of
Clifford algebras and Dirac operators in harmonic analysis and analy-
sis more generally. In the past 30 years, Clifford algebras and Dirac
operators have played a key role in three of the most important ar-
eas of mathematical research during that time: the boundedness of the
Cauchy integral on Lipschitz surfaces, the realization of discrete series
representations of semi-simple Lie groups, and the celebrated Atiyah—
Singer index theorem. Much as an analyst would like to understand and
appreciate these developments, however, there are formidable technical
barriers to doing so, particularly for more classically trained analysts, as
we have found to our cost over the years. Thus our aim from the outset
has been to meld into a coherent and reasonably self-contained whole
a body of ideas from classical singular integral theory, representation
theory and analysis on manifolds, with a view to making this material
accessible to more classically trained analysts.

Now the starting point for much of classical harmonic analysis is the
study of the boundary regularity of harmonic functions in domains in
Euclidean space. Classical Hardy space theory explores the consequences
of the improved boundary regularity obtained when consideration is
restricted to analytic functions in the plane. On the other hand, for
SL(2,R), the starting-point for representation theory of semi-simple Lie
groups, some important unitary representations become irreducible only
on restriction to analytic functions. It may be a dramatic overstatement
to characterize analytic functions as those in the kernel of a first-order



elliptic differential operator — the Cauchy-Riemann 8 operator — which
factors the Laplacian and has rotation-invariant symbol; but it is pre-
cisely such properties that one looks for in differential operators on more
general manifolds. For one can then develop a Hardy H? theory on Eu-
clidean space including an analysis of elliptic boundary value problems,
as well as explicit realizations of semi-simple Lie groups on associated
symmetric spaces. Index theorems arise in both cases, of course. Dirac
operators and their generalization, the so-called operators of Dirac type,
have such properties.

Much earlier, quite independently of all these analytic ideas, Clifford
introduced his algebras as a common generalization of Grassmann’s ex-
terior algebra and Hamilton’s quaternions, both of which sought to cap-
ture the geometric and algebraic properties of Euclidean space. Indeed,
Clifford used the name ‘geometric algebras’ for his algebras quite appro-
priately, because the universal Clifford algebra for R™ is the minimal
enlargement of R™ to an associative algebra capturing precisely the al-
gebraic, geometric and metric properties of Euclidean space. It is not
surprising, therefore, that the bundle formed by the Clifford algebra of
the tangent space at each point of a manifold should be so important in
the geometric analysis of that manifold.

In chapter 1 we present the general theory of Clifford algebras in an
elementary and thoroughgoing fashion, which should be accessible to
the algebra ‘neophyte’; it is our aim to give a coherent account of mate-
rial which is presently scattered throughout the literature with no one
account being readily accessible. In chapter 2 we quickly review the
classical Hardy space theory and its extension to minimally smooth do-
mains, and then develop a higher-dimensional analogue for this theory
based upon functions in the kernel of the Dirac operator. In chapter 3 we
explore further the connections between Clifford algebras and represen-
tations of the spin group and of the rotation group. Then, in chapter 4,
we define a more general notion of operators of Dirac type, and show
that all of the important rotation-invariant geometric differential opera-
tors of Euclidean analysis are in fact of Dirac type. Finally, in chapter 5
we introduce and then study Clifford algebras and Dirac operators on
more general manifolds, concluding with a recent simplified proof of the
local Atiyah—Singer index theorem.

This book had its beginnings in the fall of 1985, when one of us (M.M.)
was a visiting faculty member at the University of Texas at Austin.
To whatever extent we have succeeded in our goal, we owe a debt of
thanks to many of our friends and colleagues who have made this success



possible. In particular, we wish to thank René Beerends, Klaus Bichteler,
Chris Meaney and John Ryan for numerous helpful discussions, but most
of all we wish to thank Kathy Davis, Gene Fabes and Ray Kunze for
immeasurable help in the formulation of ideas going into the book, as
well as in the writing of the book. One of us (M.M.) would like to
acknowledge the particular help and support of her good friends and
colleagues Daniel Farkas, and Carol and Frank Burch-Brown, without
whom this work might never have come to fruition. Partial support from
the National Science Foundation is acknowledged by both of us, too.

Finally, we wish to express our tremendous gratitude to Margaret
Combs, whose patience, skill, and craftsmanship produced such a mar-
velous typescript.
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Clifford algebras

Associated with any Euclidean space R™ or Minkowski space RP? is a
universal Clifford algebra, denoted by U,, and U, ,, respectively. Rough-
ly speaking, a Clifford algebra is an associative algebra with unit into
which a given Euclidean or Minkowski space may be embedded, in which
the corresponding quadratic form may be expressed as the negative of a
square. The real numbers R, the complex numbers €, and the quater-
nions IH are the simplest examples.

Our intent in this chapter is to give an elementary, coherent, and
largely self-contained account of the theory of Clifford algebras. In sec-
tions 1 and 2 we present the definitions basic to all of our work. The bal-
ance of section 2 is devoted to three constructive proofs of the existence
of universal Clifford algebras: two basis-free constructions using tensor
algebras and exterior algebras, and a basis-dependent construction. The
reader who is willing to accept the existence of Clifford algebras may wish
to proceed directly to the statement of the major structural results in
section 3. Sections 4, 5, and 6 explore the interconnections between Clif-
ford algebras and orthogonal groups; the spin representation and spin
groups will be studied in detail, with Spin(p, q) and Spin(p, ¢ + 1) both
being realized in 2, ; using the notion of transformers. The reader who
is primarily interested in the analytic applications of Clifford algebras
may wish to proceed directly to the discussion of the Euclidean case in
section 7. Section 8 is a discussion of spin groups as Lie groups. In sec-
tion 9 we construct various realizations of Spin(p, ¢), p+ g < 6, whereby
these groups are explicitly identified with classical Lie groups.
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1 Quadratic spaces

Let V be a finite-dimensional vector space over the scalar field IF, where
IF =R or C. A quadratic form on V is a mapping @ : V — FF such that
(1.1)(I) Q) =XQ(v), MeF,veV,

(1.1)(ii) the associated form

Bv,w) = 3{ Q(v) + Q(w) - Qv —w) }, v,wevV,

s bilinear.
When such a @ exists, the pair (V,Q) is said to be a quadratic space;
every vector space over IF becomes a quadratic space with respect to the
trivial quadratic form @ = 0, for instance. The significance of condition
(1.1)(ii) is that the form B defines an inner product on V' x V, and so all
the usual geometric properties of inner product spaces can be exploited.
Typically, a quadratic space arises from an inner product space, defining
Q on V by, say, Q(v) = (v | v) where (- | -) is the inner product on V' x V.
For example, if (- | -) is the usual Euclidean inner product on R™ and
|v|2 = (v | v), then both (R™,|-|?) and (R"™,—| - |?) are real quadratic
spaces with associated bilinear forms (- | -) and —(- | -) respectively.
More generally, let p,q be non-negative integers with p + ¢ > 0 and
define a pseudo-Euclidean or Minkowski quadratic form on RP*? by
(1.2)
Qpq(u) = —(ul+--- +uf,) - (u§+1 + .- +u§+q) y v=(u1,...,Uppq);
the corresponding real quadratic space we shall call Minkowski space and
denote it by (R”?,Q,,). Clearly (R™°, Q,0) reduces to (R",—|- |?),
while (R%™, Qq.») is just (R™,|-|?). By convention, R*® = {0}. In the
complex case, (C", Q,) becomes a complex quadratic space on setting
(1.3) Qu(z) =22+ ---+22, 2=(21s+++22n) ;
note that in (1.3) the associated form B,(z,w) = zjw; + - -+ + 2pwy, is
complex linear in w, not conjugate-linear as in the usual inner product
on C".

Now let (V,Q) be an arbitrary quadratic space and {e;} a basis for
V. Then

Qv) = Z B(ej, ex)v;vk , v= Evjej 3
Jk £ )

and if there is a basis which is B-orthogonal in the sense that B(ej,ex) =

0 when j # k, the expression for Q(v) reduces to diagonal form

QW)=Y Qe)v?, v=) vje;.
J J
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Such a basis is easily constructed. Let
Rad(V,Q)={weV:B(v,w)=0, allveV } =V
be the radical of (V,Q). We say that (V,Q) is non-degenerate if
Rad(V, Q) = {0}; otherwise (V, Q) is degenerate, in which case V can
be written as the B-orthogonal direct sum
V = Rad(V,Q) ® Rad(V,Q)*

of Rad(V, Q) and its B-orthogonal complement. Clearly (Rad(V,Q)*, Q)
is non-degenerate, and B-orthogonal bases {e;}, Q(e;) # 0, can be con-
structed in the usual way for Rad(V,Q)*, or for V if {V, Q) is already
non-degenerate. Using (1.1)(i) to normalize the e;, we can also assume
that Q(e;) = £1 when F = R, while Q(e;) = 1 when F = C. Now
augment this basis by any basis of Rad(V, Q) if (V,Q) is degenerate.

Since Q is trivial on Rad(V,Q), we thus obtain a basis {e;} for V such
that

(1.4)

() B(ejvek) =0, j#k,

(ii) {e; : Q(e;) = 0} is a basis for Rad(V,Q) ,

(iii) {e; : Q(e;) # 0} is a basis for Rad(V, Q)" such that Q(e;) = £1

when IF =R , while Q(e;) =1 when F=C.

With some abuse of customary terminology, a basis for V satisfying
(1.4)(i), (ii), (iii) will be said to be a normalized basis; many of the
algebraic constructions to be discussed are conveniently given using such
a basis. For instance, from such a basis it follows that every quadratic

space (V, Q) is the sum of the particular examples given already. More
precisely, we have the following.

(1.5) Theorem.
Let (V,Q) be a quadratic space with B-orthogonal decomposition
V =Rad(V,Q) ® Rad(V, Q)"
Then
(a) Q =0 on Rad(V,Q),
(b) whenF =R, (Rad(V, Q)+, Q) is isomorphic to R”? where p, q
depend only on Q,
(c) when F = €, (Rad(V,Q)*,Q) is isomorphic to (C",Qn)
where n depends only on Q.

Proof. Part (a) is an immediate consequence of the definition of
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Rad(V,Q). If Rad(V,Q) # V, choose a basis {e;} satisfying (1.4)(i),
(ii), (iii). In the case IF = R this basis can be indexed so that

Q) = Q(PLuses) =~ +-+ud) + (wha + + )
J

and dim(V,Q)* = p + q > 0; by Sylvester’s theorem, the values of p,q
do not vary with the choice of basis. Part (b) is now clear, and part (c)
is proved in the same way. | |

2 Clifford algebras

As Clifford’s paper introducing ‘geometric algebras’ shows, Clifford
based his ideas on the common features he saw in the construction of
Grassmann’s algebra and Hamilton’s quaternions. In the framework of
modern algebra we shall derive both constructions simultaneously be-
ginning with an arbitrary quadratic space (V,Q), V a finite-dimensional
vector space over IF. Let A be an associative algebra over IF with identity
1 and v:V — A an IF-linear embedding of V into A.

(2.1) Definition.
The pair (A, v) is said to be a Clifford algebra for (V,Q) when
(i) A is generated as an algebra by {v(v) : v € V} and {A\1: X €
F}’
(ii) (v(v))? = -Q(v)1, alveV.

Roughly speaking, therefore, condition (ii) ensures that A is an al-
gebra in which there exists a ‘square root’ of the quadratic form —Q);
condition (i) is a minimality restriction on the ‘size’ of A.

Some simple examples illustrate how this definition contains the al-

gebras whose structure prompted Clifford to introduce ‘geometric alge-
bras’.

(2.2) Examples.

(i) When Q = 0 on V, let A be the exterior algebra A*(V) =
S rh_oA¥(V) with n = dimV, A%(V) = IF, and A'(V) = V, and let
v : V. — AYV). Since every element of A¥(V), k > 2, is of the
form vy A --- A vg, clearly A*(V) is generated by {v(v) : v € V} and
{A\1 : X € FF}; in addition,

(v@):=vAv=0=-Q(v)l.

Hence the Grassmann algebra A* (V) is a Clifford algebra for (V, Q) when
Q=0.
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(ii) Define the Pauli matrices in €2*? by

10 1 0 fo —i o 1
W=l 1l T g 1] * BT v PT 1 4

and associated Pauli matrices by
(2.4)

10 _[i o _[o 1 _Jo i
“=lo 1] 2%lo —i]* AT |-1 0] =T|i o]

As elements of the associative algebra €2*?2,
2_ .2 _ 2 .2 2 _ 2.2 2. .
00—01—02—03—1, eo—I, 61—62—63—"‘1,
while
(2.5) ook = —iog , ejer = e

when {j,k,¢} is a cyclic permutation of {1,2,3}. These matrices will
occur throughout the theory of Clifford algebras. For instance, set
‘uo,o — {/\00 tAE R} 3

911,0={[; g]:z,yeR}, ‘uo,l:{[fy z]:x,yER},

and

. To+iT1 T2tixT3 | . z1 22|, .

‘2[0,2 = {[—$2+i$3 :L‘o—i(l:l] 1T ER} = {[_22 21] 125 € C} 3
Then each of these is an associative subalgebra (over R) of €**? having
an identity, and
(2.6) Wo=2R, Wyo=2ROR, Wy, =C, WUpp=H
where H is Hamilton’s algebra of quaternions. As the notation suggests,
A, , also is a Clifford algebra for R”? with respective embeddings v
given by

O—*O, Yy —yos, y—yez, ($1,$2)—’13181+$2€2.
In each case the proof amounts to a simple computation using properties
of the o; and e;. For instance, in g2

2
(V(Il,zg)) = (-'L'lel + :B262)2 = —(:L‘% + z%)eo

since the cyclic permutation property of {e;, ez, e3} ensures that ejez +
eoe; = 0; alternatively, by direct calculation we see that

ity z2 |7 10
1 2 (2 2
[—.’1:2 —ia:1] o (.’E1+.’E2) [0 1] ’

(iii) As an associative algebra over €, the matrix algebra €**? is a



