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PREFACE

Differential equations have long been recognized as one of the most
powerful instruments for the investigation of natural phenomena. During
and after a first course in them, however, the average student fails to realize
their power and utility in bringing to light the hidden laws operating in the
physical world. The writer thinks that a greater realization of the power
and utility of differential equations would result if a course in them in-
cluded more applications and in greater variety, devoted more time to the
derivation of the equations, and put more emphasis on the interpretation
of the solutions.

The chief aim of the present book is to show how differential equations
arise, how to solve them in the most direct manner, and what the solutions
mean or imply. An additional aim is to exhibit the power and utility of
differential equations by showing the student what they can do. In the
attempt to accomplish these aims, all differential equations in the applica-
tions are, with two or three exceptions, derived ab nitio from fundamental
principles or from known physical laws; they are derived and solved in
literal form; and the solutions in most cases are interpreted and discussed
as to their meaning and implications. This procedure shows the student
how differential equations come about and what their solutions tell about
the phenomenon in question.

Because of the large number and variety of applications, it has been
thought best to separate the book into two parts, the first part dealing
with the solution of differential equations and the second dealing with ap-
plications. Although the second part fills the greater number of pages, the
first part contains an adequate treatment of all the methods and processes
needed in the applications. When used as a textbook, the teacher may use
such topics and problems from each part as best suits his purposes.

In Part I, I have attempted to give a clear and sufficient treatment of
what I consider the best methods of solving the types of equations that
arise in the applications. Special attention has been given to linear equations
with constant coefficients because of their great importance in applied
mathematics. Because I think the method of undetermined coefficients and
the method of Laplace transforms are the best methods of solving the vast
majority of such equations, I have taken special pains to explain the former
method with unusual thoroughness and have explained the latter method
sufficiently for the applications in this book. Many of the equations in
Part II are solved by both methods for comparison. To facilitate the use
of Laplace transformas I have appended short tables of direct and inverse
transforms at the end of the book.
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Certain types of differential equations with variable coefficients are of
scarcely less importance than those with constant coefficients. I have there-
fore given a fairly extensive treatment of such equations in Chapter II1I.

Although the chapter on partial differential equations is not long, it
treats in sufficient detail the types of equations that are of most importance
in physics and engineering

In recent years the subject of Fourier’s Series has become an important
item in the educational equipment of engineers. That subject has therefore
been given an adequate treatment in Chapter V.

The problems and topics treated in Part II have been selected because
of their interest, instructive value, practical importance, or for all of these
reasons. Some of them are above the elementary level, but they have all
been brought within the easy understanding of students who have had the
usual college course in physics and a first course in caleulus. An effort has
been made to give all the whys and wherefores pertaining to each problem
or topic. The large number and wide variety of applications should give
the instructor considerable latitude in the selection of problems to suit the
needs and interests of his students.

In the applications of differential equations to natural phenomena, it is
sometimes necessary to make legitimate approximations in the derivation
of the equations or in their solution. When such approximations have been
made, I have tried in all cases to justify them by showing their nature and
magnitude, in order that the student may have confidence in the soundness
of the results obtained.

The many solved problems enable the student to see how initial and
boundary conditions are used to determine constants of integration under
8 variety of conditions. They also exhibit certain techniques that must
sometimes be used in applied problems.

Numerical examples are included here and there to add interest, to illus-
trate the use of literal results, and to show the magnitudes of the quantities
involved.

J. B. ScArBOROUGH
December, 196/,
Suggestions to Teachers

When this book is used as a textbook, some teachers may prefer to take
the applications in Part II along with the text material of Part 1. In that
case the following suggestions are offered:

Chapters VI-X (except Arts. 68-69) can be studied after Chapter I is
finished; Chapters X1 (except Arts. 82-84) and XIII can be studied after
Chapter I1 is finished; Chapters XVI, XVIII, XX, and XXI can also be
studied after Chapter II is finished; Arts. 68-69, 82-84, and Chapters XII,
XIV, XV, and XVII can be studied after Chapters IIT and IV are finished.
Chapter XIX should be taken after Chapter V is finished.
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CHAPTER I

EQUATIONS OF THE FIRST ORDER. SPECIAL EQUATIONS
OF THE SECOND AND HIGHER ORDERS

1. Definitions and Preliminary Statements. A differential equation
is an equation that invelves derivatives or differentials. Thus the following
are differential equations of several types:

(1) %+3yta.nx=0
(2) T2 1391 2 = gint
(4) yzg_::— ayg_?z}: bxz
(5) g;zz=kzg_::

An ordinary differential equation is a differential equation involving
only one independent variable. Thus (1), (2), and (3) above are ordinary
differential equations.

A partial differential equation is a differential equation that involves two
or more independent variables, as (4) and (5) above.

The order of a differential equation is the order of the highest derivative
in it. Thus, in the above list (1) is of the first order and all the others are
of the second order.

The degree of a differential equation is the degree of the highest-order
derivative appearing in it when the equation is free from radicals. In the
above list (3) is of the second degree, while all the others are of the first
degree.

A differential equation in which the dependent variable and all its
derivatives are of the first degree and none multiplied fogether is called
a linear equation. Stated otherwise, a differential equation is linear if it is
linear in the dependent variable and all its derivatives.

A partial differential equation of the first order is defined to be linear if
the partial derivatives are of the first degree and the dependent variable is
of any degree and occurs in any manner (see Art. 32).

In the above list of equations all except (3) are linear.



4 FIRST-ORDER AND SPECIAL HIGHER-ORDER EQUATIONS [Caar. I

To solve a differential equation is to integrate it in some manner and
thereby obtain an equation which does not contain derivatives. The solu-
tion of a differential equation is thus any value of the function which
satisfies the given equation.

Only a few simple differential equations can be integrated directly. The
solutions of most equations must be found by indirect methods, each type
having its own method of solution. In order to solve differential equations
with the least amount of labor, the student must be able to recognize each
of the several types and recall the proper method of solving it.

The number of differential equations which can be integrated in exact,
finite form is very limited. When no exact, finite solution can be found, the
solution must be expressed as a power series or else tabulated step by step
by numerical processes.

The student will recall from calculus that, except in the case of definite
integrals, it was necessary to add a constant of integration each time an
integration was performed. The same is true in the integration of differen-
tial equations. Hence we may infer that the solution of a second-order
ordinary differential equation, for example, will contain two constants of
integration, since the equivalent of two integrations must be performed in
solving the equation. It is proved in works dealing with the theory of dif-
ferential equations that the general and complete solution of an ordinary
differential equation of the nth order must contain n arbitrary constants
of integration, and no more.

A particular solution of a differential equation is any solution which can
be obtained from the general solution by assigning fixed values to some or
all of the arbitrary constants in the latter.

A third kind of solution of a differential equation is the singular solution.
It contains no arbitrary constants and cannot be derived from the general
solution by assigning fixed values to the constants in that solution. Singular
solutions will not be considered in this book.

Since every solution of a differential equation must satisfy the given
equation, it is usually an easy matter to check the correctness of a solution
by substituting it into the given differential equation. Such a check should
be made in any case of importance, or whenever there is any doubt as to
the correctness of a solution.

As an example of such a check, we will show that

(a) y=cz' +c+ehnz

is a solution of the differential equation

2 dy dy _
(b) xE? 2d—x-—0



