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PREFACE

THIS complete edition of volume 11 of our review series is the first example of the
format which will be adopted for future editions. The aim of the series continues
to be the provision of in-depth reviews of all aspects of NMR spectroscopy, as
illustrated by the articles in this volume. Thus, the articles by Dr. Kowalewski on
coupling constants, and Drs Ebraheem and Webb on chemical shifts are concerned
with the relationships between these NMR parameters and electronic structure,
whilst articles by Dr. Mann, by Drs Aime and Milone, and by Dr. Petrosyan deal
with applications of NMR to inorganic and organic chemistry. Dr. Shoolery
contributes a timely article on the use of '>*C NMR to the quantitative analysis of
mixtures, particularly of naturally-occurring substances of commercial importance.
The volume is fittingly completed by a review by Drs Smith, Mantsch and Saitd of
the developing subject of deuterium NMR, which covers applications in physics,
chemistry and biochemistry.

NMR spectroscopy is at present experiencing an exciting period of development
as new experimental methods are introduced, and in future volumes in this series
we will include articles by leading NMR spectroscopists describing the new
techniques and their applications in chemistry, physics and biology.

vii
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1. INTRODUCTION

The discovery of field-independent splittings in the
NMR lines of liquids, made independently by
Gutowsky et al.'**» and Hahn and Maxwell,** dates
back to the initial days of nuclear magnetic
resonance. They expressed the interaction energy giv-
ing rise to this fine structure as

Exe = b gy Bie- T (1.1)

This phenomenon has subsequently been referred to
as indirect nuclear spin-spin coupling. Jyx- in eq (1.1)
is the coupling constant between the nuclei N and
N’, having nuclear spins Iy and Iy.

Not many years passed before Ramsey® formu-
lated the theory of this effect in terms of the electron-
coupled interactions between nuclear spins. Ramsey’s
estimate of the coupling constant in the HD molecule
agreed well with the experimental value. A few years
later McConnell® estimated the proton coupling
constant in the CH, group as negative, using Ram-
sey’s®® theory and the Dirac vector model. Soon after-

wards, simple computational schemes applicable to.

larger molecules were presented by McConnell”
within the framework of the molecular orbital (MO)
theory and by Karplus and Anderson®® using the
valence bond (VB) method. A considerable number
of papers developing methods and reporting the
results of applications were soon to follow. The
achievements of this early period in calculating nuc-
lear spin—spin coupling constants have been reviewed
by Barfield and Grant.'® In the mid-sixties Pople
and Santry'" improved the method for calculating
coupling constants within the framework of MO
theory by presenting a way to discard the most
serious approximation inherent in the method of
McConnell.” In the following years considerable
progress was made with the MO method itself, the
independent electron model being gradually replaced
by the non-empirical and semi-empirical self-consis-
tent field procedures. These new methods were soon
to find their way into the area of spin—spin coupling
constants. The work of the late sixties has been
reviewed by Murrell."!#) Since the appearance of Mur-
rell’s review the rapidly expanding volume of reported
work in this field has been reviewed on an annual
basis by Grinter."*® The purpose of the present
review is to provide a complete survey of develop-
ments occurring subsequent to Murrell’s paper.

The structure of the present review differs some-
what from that of its predecessors. We start by dis-
cussing the basic theory and computational methods
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for calculations of coupling constants in Sections 2
and 3. Section 4 covers applications to diatomic mol-
ecules: the hydrogen and hydrogen fluoride mol-
ecules. Chapters 5 to 8 are devoted to applications
for larger systems. Generally, the primary criterion
for the Section division is the number of chemical
bonds between the coupled nuclei—a classification
used often in reviewing the experimental data.
Further subdivision of the Sections is based on either
the nuclear species involved or the chemical situation.
The drawback of such a division is that different parts
of the same paper are often mentioned in different
Sections. Still, I believe that this scheme is the most
tractable possible. Certain problems are too specific
to be accommodated within the framework of Sec-
tions 5-8 and these are reviewed in Section 9 as
special topics. Section 10 contains brief and general
concluding remarks—when appropriate conclusions
of a more specific nature appear in the text.

In order to facilitate comparison with experimental
values, all the calculated coupling constants quoted
in text and tables are given in Hertz (Hz) units. In
certain cases, however, it is more appropriate to work
in terms of the reduced coupling constant,'! Ky,
related to Jyn by the following expression

Kxn = 41 T/ hysyne (1.2)
where yy and yn. are magnetogyric ratios of the N
and N’ nuclei. The reduced coupling constants are
especially useful when comparisons are made between
couplings involving different nuclei. The reduced
coupling constants are given in the SI units.

As a rule, experimental values are quoted without
giving references. In almost all cases the experimental
data are taken from the theoretical papers in connec-
tion with which they are quoted and thus the refer-
ences can be traced through these. Few exceptions
to this rule are made, e.g. when all experimental data
quoted in a table have been reported in a single
paper. I hope that the authors of the experimental
papers will excuse this procedure. The reason for
adopting it is fairly obvious: it is to keep the already
long reference list from becoming unwieldy.

This review covers the period from 1969. When in
context, some papers from the preceding years have
also been mentioned, the exclusion of other papers,
reviewed previously by Barfield and Grant'® and
Murrell*? was necessitated by the constraint of
space. The coverage of the period 1969-1975 should
be reasonably complete. Nevertheless, certain papers
may have been overlooked, for which I apologize. The
review was completed in the spring of 1976.

2. THE THEORY OF NUCLEAR SPIN-SPIN COUPLING
2.1. Basic Interactions

Following Ramsey,”® the electron coupled interac-
tions between the nuclear spins in molecules can be
described in terms of the following Hamiltonian

H=H, +H, +H,+H, (2.1)
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The first and the second terms describe the interac-
tion between the nuclear magnetic moments and the
orbital motion of the electrons and are given by the
following equations

Y eh _3
H,=—§ Z VNVN'ZrstrkNS’
C NN k

X [(TN'iN')(rkN'rkN') - (TN'rkN')(iN"l'kN)]
(22)
~ 28h N _
Hy, = %ZVNIN'ZrkNa(rkN x Vi) (2.3)
N k
where f is the Bohr magneton and r;y is the radius
vector from electron k to nucleus N.

The dipole-dipole interaction between the nuclear
and electron spins is given in the following form

I'?z = 2ph Z N Z [3(sk' rkN)(iN ' rkN)rk_NS
N k

- (gk' iN)rk_st 24
where S, denotes the spin of eléctron k. Equation (5)
describes the interaction between the nuclear spin and
electrons outside the nucleus. The electrons may,
however, have a finite probability of being at the nu-
cleus. The interaction between the nuclear and elec-
tron spin at the site of the nucleus is called the Fermi
contact interaction and is given by

16nph

A. =
} 3

Z N Z 5(|'kN)Sk' iN (2.5)
N k

where d(r,y) is the Dirac delta function and expresses
the property of H; of operating on the wavefunction
at the nucleus only.

It may be of interest to discuss the origin of these
three types of interactions in somewhat more detail.
All of them can be obtained in a natural way from
the relativistic Dirac eqn for an electron in an exter-
nal field (cf. Blinder**) under the assumption that
the vector potential of a nucleus is that of a point
dipole

Ixr
AN =N 3N-
'N

(2.6)

The orbital terms may also be derived non-relativisti-
cally by replacing the square of the momentum vector
p? in the electrostatic Hamiltonian by

2
ﬁ2=<f)+EA>.
c

The term quadratic in Ay leads to H,, and the cross
term between p and Ay gives rise to H,,. The elec-
tron-spin dependent terms can be obtained non-rela-
tivistically by considering the magnetic interaction
between the magnetic dipole of a spinning electron
and the field arising from the vector potential (2.6).

2.7)

By =V x Ay (2.8)

TaBLE 1. Hydrogen-like relativistic corrections B(n,z) for

s-states of some atoms?%:21)

Principal

Nuclear quantum
Atom charge number B(n,z)
C 6 2 1.004
Si 14 3 1.023
Ge 32 4 1.125
Sn 50 S 1.348
Pb 82 6 2.592

For the details of the derivation the reader is referred
to Hameka.'> It should be noted that eqns (2.4) and
(2.5) are obtained by setting the magnetic dipole
moment due to electron spin to 4 = — 2fS/h instead
of the correct —g,S/h, where g, = 2.0023.

The form of the magnetic dipole hyperfine Hamil-
tonian is correct for a point nucleus at the non-relati-
vistic limit. The relativistic corrections of H, were
first discussed in 1930 by Breit®® who already
pointed out that the correction factor is 3.9 for the
2s shell of uranium. In Breit’s original idea the hydro-
gen-like correction factors B(n,Z) were dependent on
the principal quantum number n and nuclear charge
Z. This was subsequently generalized for arbitrary
n17-18) and later also for arbitrary ! and j (thus in-
cluding H, and H,).'%2? These corrections enter cal-
culations of the matrix elements of the magnetic
dipole hyperfine Hamiltonian as simple multiplicative
factors.

Despite their large magnitude for heavier elements,
cf. Table 1, these corrections have been largely over-
looked in the NMR literature, probably because of
the paucity of theoretical calculations for the heavier
elements. For example, it has been established??) that
the experimental trend for Jyx in the series CH, to
PbH, can only be reproduced when relativistic cor-
rections are included. A minor point that should be
mentioned is that these relativistic corrections are cal-
culated for the diagonal matrix elements of the hyper-
fine Hamiltonian, while the calculations of the spin—
spin coupling constants require, strictly speaking, the
off-diagonal elements between the electronic ground
state and excited states.

Some confusion regarding the form of the Fermi
contact interaction has been caused by the diverging
second-order correction to the energy of a hydrogen
atom perturbed by (2.5) (self-coupling energy, E{3)),
which was first discussed by Schwartz.*? The conse-
quences of this fact for the calculation of spin—spin
coupling constants will be discussed in detail in con-
nection with the presentation of variational calcula-
tions for the hydrogen molecule. Since the discussion
regards the form of one of the basic interactions, it
seems appropriate to review some of the problems
involved here.

The first problem is to determine the correct order
of magnitude of E{#. Gregson et al*® found that
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a finite value could be obtained by using an exponen-
tial approximation to the function

To

(e + o) @9
appearing in Blinder’s derivation!* of the contact
operator. r, in (2.9) is of the order of the nuclear
dimensions. A similar calculation using (2.9) was car-
ried out by Power and Pitzer.**) However, Moore
and Moss'?® found that use of the ‘Blinder operator’,
eqn (2.9), alone is not correct since it does not repro-
duce the relativistic results. Latvamaa et al.?®’ con-
sidered the same problem at the Dirac and quantum
electrodynamic levels of approximation and found
that the Gregson self-coupling energies are over 100
times too large and totally unphysical. The reason
is that the self-coupling energy of the hydrogen atom
is dominated by contributions from the high energy
(ultrarelativistic) continuum intermediate states,
which precludes non-relativistic treatment.

The next problem is to determine the size of the
effect of these high energy intermediate states, corre-
sponding to a sharp structure in the perturbed wave
function, on the spin-spin coupling constants.
According to the summary of Pyykko,?” these effects
are less than 1073 of the total value for several X-H
and X-X coupling constants. Sidnger and
Voitlinder?® also find using variational method that
the self-coupling and hetero-coupling energies are in-
dependent of each other to the order 0(107°). We
thus conclude that the self-coupling energy is not a
relevant quantity in the present context and the form
of Fermi contact interaction given by equation (2.5)
may safely be used, at least for perturbation calcula-
tions, provided the relativistic corrections are taken
into account for heavier nuclei.

2.2. The Rayleigh-Schridinger Perturbation Theory of
Nuclear Spin—spin Coupling Constants

All the interactions expressed by eqns (2.2)+2.5) are
small compared with the molecular electrostatic
Hamiltonian and, thus, may be dealt with using per-
turbation theory. The terms which are bilinear in the
coupled nuclear spins can then be selected from the
perturbation expansion of the energy and equated to
the phenomenological energy expression given by eqn
(1.1). The electronic structure dependent factor in
front of the scalar product Iy'Iy may be identified
with hJyn-

The first part of the orbital interaction, H,,, will
immediately give the expression of desired form as
the first-order perturbation correction to the energy;
the other terms, or their combinations, will contribute
in the form of second-order energy terms. A general
form for this sort of second-order energy term, involv-
ing the nuclear spins Iy and Iy, may be written as

Ef8 = k2 Y (O]AN-In[n) (n|By.-Ix.10)
n EO - En

(2.10)

where the superscript AB refers to the combination
of mechanisms giving rise to the energy term. kg5,
is a constant. Vector operators Ay. and By, depend
on the electronic coordinates, momenta and spins and
their exact form may be derived from eqns (2.3)+2.5)
for any combination of perturbations involved. The
summation is carried out over all the excited states
of the molecule, ¥, or |[n> with corresponding ener-
gies E,. The symbols (0> and E, denote the ground
state wavefunction ¥, and energy, respectively.

Equation (2.10) is not exactly of the form (1.1) but
rather

Exn = hly-Jyn Iy @11)

where it is assumed that the integrations implied by
eqn (2.10) involve electron spins and coordinates only,
allowing the nuclear spins to be factored out. More-
over, in going from (2.10) to (2.11) the matrix elements
of vector operators Ay and By are treated as vectors
and the second rank coupling tensor Jyy- is obtained
by outer multiplication following the general relation

(An-INBy - Iy) = In(ANBy) - Ine (2.12)

Actually, eqn (2.11) is the correct form of the electron
coupled nuclear spin-spin interaction in anisotropic
liquids, e.g. for samples partially oriented in nematic
liquid crystals. In the absence of a preferred direction,
the free tumbling of molecules will average out the
eventual anisotropy, leading to the type of interaction
energy expressed by eqn (1.1) with

J=3U+ Iy + J.) (2.13)

When this is done expression (2.10) can be formulated
in terms of the separate scalar product of nuclear spin
operators and the matrix elements of operators Ay
and By

AB __ 1]AB
En = 3kNN’<

¥ {O]Ax |1;l>'_<2| BN‘|0>>IN. I
’ c (2.14)

and each of the different contributions to Jyy. may be
written

PR SRCULNDRA N

3h 5 E,—E,

where the factor of two arises because of presence
of two equivalent energy terms which differ in that
the two nuclei N and N’ are permuted. The sum of
the effects deriving from different mechanisms will
give the total value of the coupling constant. Ram-
sey® has shown that all the cross-term contributions
to the motionally-averaged coupling constant vanish
and that the three parts of the perturbation can be
treated separately. The reason for vanishing cross-
terms between H,, and both H, and H, is that, in
the absence of spin-orbit coupling, the excited states
|n> giving non-zero matrix elements of H,, are of
the same multiplicity as the ground state (singlet in
most cases), while only the excited triplet states can
be coupled to the singlet ground state by the spin

(2.15)
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dependent operators H, and H,. The general validity
of this statement can be proved using the rules of
vector coupling of angular momenta given by Con-
don and Shortley.® The cross term between H, and
H, does not vanish because of multiplicity; the
motional average is zero because the two operators
involved have different angular dependence.

Upon substitution of the forms of the vector opera-
tors appearing in the Hamiltonian (2.3)~2.5) into
(2.15), the following expressions are obtained

8
IW =~ ﬁﬁthVN“/N' > <0 2 rid (Ty X Vi) ">4
n k
X <n YN (e X V) 0>/(1En —E)
J
(2.16)
8 _
SR = - 3 RN Z <0 Z 3N (Sk' Y
n k
— Sy n>-<n ZSrﬁ\ﬁ(Si-er»)err
J
- rx3S; 0>/(3E,, —E) (2.17)
2 [16nph\? .
IR = = I <Tﬂ> NN D <0 Y. 0(rn)Si ”>

X <n Y 8(rn)S; 0>/(3E,, —E) (2.18)
J

where the summation is carried out over the excited
singlet states in (2.16) and over the excited triplet
states in (2.17) and (2.18). For reasons of complete-
ness, the contribution from H 12> though very seldom
calculated, may be included. It has the form

)

g 4 e*h?
(2.19)

b= — —— NI (O Y (i Fan) Pl P
NN ) Sme? }NVN< ‘;(m UL

For the Fermi contact term it may be proved, using
the above mentioned general formulae of Condon and
Shortley,*? that the three parts of the scalar product
dueto S, §y and S, contribute equally to the coupling
constant. S, involves the M, = 0 component of the
triplets, while S, and §y give non-zero matrix elements
between the singlet ground state and M = +1 triplet
components. Equation (2.18) may thus be further sim-
plified by replacing S, and Sj by their z-components
and carrying out the summation over the excited trip-
let wavefunctions corresponding to Mg =0 only.
Such a replacement means that the multiplication by
1 in eqn (2.13) and (2.18) should be excluded and the
expression for JG) becomes

128 | .
- ? Bhynyn Z <0~ Z O(rn) Szx
n k

I,M, = 0>-<n,S= 1, M,

/
0 Y 8(rn)S.; 0> / CE, — E,)

3) _
IR =

n,S

Il

(2.20)

Thus, the Fermi contact mechanism is isotropic and
does not contribute directly to the anisotropy of the
coupling tensor. The other mechanisms are not iso-
tropic; the expressions for the whole coupling tensor
may be of interest for them and are readily obtained
by suitably replacing the scalar products in eqns
(2.16), (2.17) and (2.19) by outer multiplications and
excluding the factor 4. Furthermore, for studies of ani-
sotropy, the Fermi contact-spin dipolar cross term
should be included and is, in fact, dominant in many
cases. Substituting the appropriate operators in eqn
(2.15) and replacing the scalar product by outer mul-
tiplication gives

64ph .
- VNIN Z(BEn - Eo) !

3 "
I’l>

3% <0
2 Sy )N — IS,
o

«(n 0)

The Rayleigh-Schrodinger perturbation theory eqns
(2.16)~(2.21) have been given by Ramsey.”®’ The main
difficulty in using them for calculations is that know-
ledge of all excited states of the molecule under con-
sideration is required, including continuum, which is
an unreachable goal. Different approaches suitable for
making the actual calculations will be presented in
the next Section. Some of them use eqns (2.16)-(2.21)
and a truncated set of excited state wavefunctions
with varying degrees of sophistication, others use per-
turbational schemes of different types. The reason for
deriving the general formulae as done in this Section
is not dictated by a conviction that these are the most
useful ones. Rather, the derivations have been pre-
sented partly for historical reasons and partly because
of the straightforwardness of the theory behind them.

The variational method has also been applied in
the calculation of nuclear spin-spin coupling con-
stants. However, since all the recent applications of
this method have been limited to the hydrogen mol-
ecule, the review of this theory will be saved for Sec-
tion 4 on the diatomic molecules.

2,3) _
JE3) =

;6(rkN)Sk

.21

3. COMPUTATIONAL METHODS
3.1. Introductory Remarks

This Section deals with general computational
methods for calculation of nuclear spin-spin coupling
constants, i.e. methods applicable for one-bond
couplings as well as long-range couplings and in dia-
tomic molecules as well as polyatomic molecules.
Methods specially designed for the calculation of
m-electron contributions, ‘through space’ couplings,
etc. will be discussed in later Sections. Methods
applied so far only to diatomic molecules, even if gen-
eral in principle, will be reviewed in Section 4.
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We begin by discussing perturbation methods
within the framework of molecular orbital theory.
Therefore, it may not be out of place to review briefly
the different types of molecular orbital wavefunctions
and methods. A somewhat arbitrary but useful classi-
fication of the MO methods used for the calculation
of nuclear spin-spin coupling constants is the follow-
ing, where the ordering is based on increasing
accuracy:

1. Independent electron LCAO MO methods in-
cluding all valence electrons; two widely used
schemes of this type are those of Hoffman®® and
Pople and Santry.3"

2. Semi-empirical self-consistent field (SCF) LCAO
MO methods including all valence electrons; the iter-
ative solution of the Hartree-Fock eqns determining
the molecular orbitals, as formulated by Roothaan‘3?
is applied with simplifying assumptions about some
of the integrals involved. Two such methods, devel-
oped by Pople and co-workers, are CNDQ®33-39
(Complete Neglect of Differential Overlap) and
INDO®®3"  (Intermediate Neglect of Differential
Overlap). The main difference between these two
methods lies in the inclusion of one-centre exchange
integrals in the INDO method, which is consequently
more accurate.

3. Non-empirical (ab initio) SCF LCAO MO
methods where the Hartree-Fock eqns®?) are solved
for all electrons after computing all of the integrals
involved without approximations. The non-empirical
calculations may be further classified depending on
the type of the atomic basis set used (Slater type orbi-
tals, STO, or Gaussian type orbitals, GTO) and the
size of the basis set.

3.2. The Fermi Contact Mechanism: Molecular Orbital
Theory

For most of the coupling involving protons and
the first row atoms (with a possible exception of fluor-
ine) the Fermi contact mechanism accounts for the
dominant contribution to the coupling constants. In
many cases, computational schemes have been first
developed for this particular contribution and later
generalized to include other mechanisms. Thus, it
seems appropriate to start this review by presenting
methods for the calculation of the Fermi contact con-
tribution to the coupling constants.

Two of the early methods require special attention
because they are still being applied. Though it came
later chronologically, the method developed by Pople
and Santry'? is discussed first. In this method, eqn
(2.20) is used and a truncated set of excited states’
wavefunctions is constructed by promoting a single
electron from the molecular orbital occupied in the
ground state into a virtual orbital. This assumption
simplifies the form of eqn (2.20) considerably and
gives
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where the many-electron integrals are reduced to one-
electron matrix elements of the Dirac delta function
between the occupied MOs i and unoccupied a, or
the products of orbital amplitudes at the coupled nu-
clei. The infinite summation over the excited states
is replaced by a finite sum over pairs of MOs. The
term 3AE;., is the excitation energy corresponding
to the excitation of an electron from the orbital i
into a, the resulting electron configuration being a
triplet. Pople and Santry’! then introduced the
LCAO MO approximation with a minimal basis set
of valence shell atomic orbitals. Further, only the in-
tegrals involving a single atomic centre (one-centre
integrals) have been retained, giving the following
expression
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where sy(0) is the amplitude at the origin of the
valence shell s orbital associated with nucleus N and
¢;n 18 the LCAO coefficient of this atomic orbital in
the i-th MO. Further, assuming the independent elec-
tron model, the triplet excitation energies are given
by the differences of the orbital energies €, and ¢;
between orbitals a and i and eqn (3.2) may be written
in terms of the quantity known as the atom-atom
polarizability, 7y
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At an even earlier date, the MO method for the
calculation of the coupling constants was formulated
by McConnell,”” who started with eqn (2.10) and im-
mediately introduced the average excitation energy
approximation. Providing that a suitable average de-
nominator 3AE can be found, the closure relation
may be used for the matrix elements in the numera-
tor, yielding an expression solely in terms of the
ground state wavefunction

3) _
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Assuming a singlet ground state and using a LCAO
MO approximation, McConnell obtained
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where P, is the clement of the bond order matrix
between the valence atomic orbitals sy and sy

PstNv =2 ZCiNCiN'

¢;n and ¢y have the same meaning as in eqn (3.2).
Actually, the atom-atom polarizability expressed in
eqn (3.4) will reduce to (3.7) if the average excitation
energy is introduced. The McConnell” formula (3.6)
can thus be viewed as an approximation of formula
(3.3) of Pople and Santry."'?

Equation (3.6) has the obvious drawback of predlct~
ing a positive sign for all the coupling constants
between nuclei with magnetogyric ratios of the same
sign. This is not the case with eqn (3.3). The method
proposed by Pople and Santry!? is very useful for
qualitative discussions and has been used for this pur-
pose with considerable success. The applications
using independent electron schemes for numerical cal-
culations were popular in the second half of the six-
ties.!? However, attempts to use eqn (3.3) and the
independent electron models for quantitative discus-
sions were severely criticized by Armour and Stone®®
who advocated use of the more correct SCF MO
wavefunctions.

This brings us to a very crucial point, which may
be stated in the following way: no perturbational
treatment can be better than permitted by the zeroth
order wavefunctions used. Equation (3.3) given by
Pople and Santry,'! is about the best possible when
independent electron theory is used. The only minor
modification that can be made is the inclusion of the
multi-centre integrals. This procedure has been sug-
gested by Varga and Zumdahl®® (who also used a
self-consistent charge variant of the extended Hiickel
theory, EHT, of Hoffman‘®?) and by Pachler.“® Still,
it is questionable whether this really constitutes an
improvement and whether it is consistent with the
rest of the semi-empirical scheme.

The situation is different when working within the
framework of the self-consistent field MO theory. In
principle, eqn (3.3) may also be used here; however,
in this case it contains an error due to the fact that
the triplet excitation energies are no longer given by
the simple differences of the orbital energies, but in-
clude also an additional term

BAEiAm =
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where the symbol (ii|aa) denotes the Coulomb inte-
gral, a special case of an electron repulsion integral

(lw) = [20)

Further, the one-centre integral approximation, pres-
ent already in eqn (3.2), may no longer be valid, es-
pecially in non-empirical calculations. Thus, in order
to find the simplest expression tolerably consistent
with SCF MO wavefunctions we must at least revert
to eqn (3.1).

The first calculation of nuclear spin—spin coupling
constants using a SCF wavefunction and eqn (3.1)

—¢ (1)¢,(2)dz, d7, (39)

was presented by Loéve and Salem“! as early as
1965. The MOs and excitation energy data were
actually taken from two different non-empirical calcu-
lations using the minimal basis set for the methane
molecule. Similar calculations have been carried out
subsequently by other authors and will be reviewed
below in the Sections dealing with applications.

In the late sixties non-empirical wavefunctions were
fairly scarce and expensive to calculate. In the area
involving coupling constants, there existed a need of
the semi-empirical SCF schemes. The CNDO method
and eqn (3.1) were first applied to the problem of
nuclear spin—spin coupling by Ditchfield and Mur-
rell“? and a similar application of the INDO method
was reported by Ditchfield.*® In both these papers
the Coulomb integrals were included but only the
one-centre integrals over the Dirac delta function
were retained, which is consistent with the other
assumptions of the methods employed. The results
of these calculations for the proton coupling con-
stants in methane and ethene are given in Table 2
together with the non-empirical results of Loéve and
Salem“? and Armour and Stone.®

Equation (3.1) is based on the assumption that the
singly-excited triplet configurations give a satisfactory
description of the excited states. This assumption,
though rather obvious as a first approximation, is not
very satisfactory for several reasons. First of all, the
virtual orbitals obtained in a SCF calculation are a
poor approximation to the orbitals for the excited
states, since they are computed in the field of 2n elec-
trons instead of the correct 2n-1. Second, as was
pointed out by Nakatsuji“® the expression (3.1) is
not independent of a unitary transformation among
the excited configurations. In practice this can mean
that a transformation to the localized orbitals may
cause a major change in the computed value of the
coupling constant. This dependence on a unitary
transformation arises when the off-diagonal elements
of the Hamiltonian matrix for the excited triplet states
are neglected. Neglect of these off-diagonal elements
will have an additional consequence. Use of egn (3.1)
without special care may lead to results without any
physical meaning for systems with high symmetry (at
least one three-fold or higher axis). This was first
pointed out by Pouzard et al“*® and explained in
terms of group theory. The spin-projected triplet
wavefunctions of the form

1
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used in arriving at (3.1) are not necessarily bases for
irreducible representations and should therefore be
symmetry-projected. The errors that arise due to neg-
lect of this projection, observed by Pouzard et al.*%
as differences between the J-value computed for dif-
ferent pairs of symmetry-related nuclei in cyclohexane
(D34 symmetry), were not very large. A more complete

+ AW, - (3.10)
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TABLE 2. Proton coupling constants in methane and ethene
(SOS) calculations

obtained using sum-over-states

CNDOMZ) INDO(43) Non_emp'(38.4l)

a b a b a b Exp
CH, ;.4 1.7 . —1.8 —6.1 — —124
C,H, gem 3 9.0 7.8 7.6 12.9 9.3 25
C,Hy cis 9.0 114 9.0 114 6.2 9.6 11.6
C,H, trans 174 24.6 235 270 14.9 20.1 19.1

“ No triplet configuration interaction.
b Triplet configuration interaction included.

collapse is also possible and has been noted by
Schaumburg.“® The fluorine-fluorine coupling con-
stant computed for different pairs of fluorines in
tetrafluoromethane (7; symmetry) varied between
—113.1 and +12.1 Hz“® The last point may be cor-
rected by resorting to symmetry projection of the
degenerate triplet configuration. This would however
not help the other deficiencies of the model, since
a more general solution is required. One way to make
the excited states more physical, suggested (in the
context of calculations of the nuclear spin—spin
coupling constants) by Armour and Stone®*® on the
non-empirical level and by Ditchfield and Mur-
rell*243 for CNDO and INDO methods, is to allow
for mixing of the singly-excited triplet configurations
(singly-excited triplet configuration interaction or,
concisely, triplet CI).

The wavefunctions describing the excited states in
this scheme are the linear combinations of the singly-
excited singlet configurations, the coefficients being
obtained by diagonalizing the Hamiltonian matrix in
the basis of configurations. Following Ditchfield and
Murrell,*? we may thus write

S =3y, .d (3.11)

where d is the eigenvector matrix and ¥, is the new
set of triplet state wavefunctions. The expression for
the coupling constant becomes

) [
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where d}_,, is an element of the d matrix of eqn (3.11)
and *AE, is the n-th eigenvalue of H — E,l. It should
be noted that diagonalization of the Hamiltonian
automatically guarantees the proper symmetry pro-
jection.

Expression (3.12) requires a considerably larger
computational effort than eqn (3.1), because the whole
Hamiltonian matrix (the diagonal elements are given
by (3.8) and the off-diagonal ones consist of electron
repulsion integrals of general type (3.9) with the in-
dices x,A,u and v denoting the MOs) must now be
constructed and diagonalized. The first stage of these

calculations cannot be avoided but the second one
can be made easier; Armour and Stone®®*® took into
account the interaction between the singly-excited
triplet configurations by writing

m>

0> (3.13)

which is valid for an arbitrary set of triplets |[n> and
|m> and thus obviously invariant to unitary transfor-
mations. Equation (3.12) corresponds to the case
when the states [n> and |m> are obtained from the
singly excited configurations by means of a unitary
transformation d, which diagonalizes the Hamil-
tonian. Equation (3.12) is thus a special case of (3.13).
The computations implied by (3.13), with such singly-
excited triplet configurations as |[m> and |n> are
simpler than those in (3.12) (matrix diagonalization
is replaced by matrix inversion) but eqn (3.12) has
been used more often. The effect of the triplet CI
can be seen in Table 2 and is especially clear in the
work of Armour and Stone.*®)

Singly-excited triplet CI offers one way to improve
the description of the excited states. Other procedures
have also been suggested for this purpose. One
approach, applied to the problem of the nuclear spin—
spin coupling constants in polyatomic molecules by
Birnstock and Kldpper,“” is to compute the excited
states’ orbitals a in eqn (3.1) as improved virtual orbi-
tals, in the manner developed by Huzinaga and
Arnau.*®

Working with eqn (3.1) or (3.12) means that the
infinite summation of eqn (2.21) is replaced by a sum
over a finite set of discrete excited states obtained
within fairly simple models. An entirely different way
to handle eqn (2.21) has been suggested by Pyykkd
and co-workers.?!*?) In their approach the summa-
tion is replaced by integration over momenta of the
intermediate states. The formula for the coupling con-
stant becomes
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where B(n,Z) is the hydrogen-like relativistic correc-
tion (necessary in this case, since coupling constants
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involving heavy nuclei are being calculated®"), k is
the momentum of the intermediate state and @(k) is
the spectral density function, defined in slightly differ-
ent ways for different cases.?1:#%

The framework of the Hartree—Fock theory also
provides another way of obtaining the second-order
properties like the nuclear spin-spin coupling con-
stant, which at first glance appears quite different.
This is the so-called coupled Hartree—Fock (CHF)
theory. Generally speaking, CHF means that the Har-
tree-Fock eqns for the molecular orbitals are solved
in the presence of a perturbation. There are two com-
putational schemes used for the calculation of the
coupling constants that fall into this category. For
the first one, like so many other developments in
theory of NMR parameters, we are indebted to Pople
and co-workers.*°5? Their approach is called the
finite perturbation theory (FPT) and involves the cal-
culation of the wavefunction in the presence of a finite
perturbation. In the case of the nuclear spin—spin
coupling constants this involves an unnaturally large
nuclear magnetic moment. In the original
papers®®*2) the discussion is carried out in terms of
the reduced coupling constants Kyy which are
related to Jyn by eqn (1.2) and we follow this here.

Consider a molecule with two nuclear magnetic
moments uy and uy directed along the z-axis. In the
presence of the Fermi contact interaction alone, the
Hamiltonian for the molecule may be written as

H = Hy + unHy + unHy (3.15)

where

lénp
3

Hy = Y 3(rn) Sa- (3.16)
k

From the power expansion of the energy in the pres-
ence of the two magnetic moments, the expression

for the reduced coupling constant may be written

02E(1in, Lin:
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(3.17)

Using the Feynman-Hellman theorem, proved by
Pople et al. to be valid for the SCF wavefunctions
in the case at hand,®" the second derivative of energy
may be set equal to the first derivative of the expec-
tation value of Hy with respect to py., evaluated in
the presence of uy:

. (3.18)
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Thus, the calculation of Kyy: requires calculation of
the wavefunction in the presence of one of the nuclear
magnetic moments, uy.. Subsequent calculation of the
expectation value of Hy and its derivative is much
simpler and can easily be done for any number of
magnetic nuclei in a molecule.

In the finite perturbation method of Pople et
al.®%=32 Wy, is computed as an unrestricted SCF

LCAO MO wavefunction. This is necessary because
the presence of /zN,I-i N (the matrix elements of which
enter the Fock matrix with a different sign for « and
B electrons) induces a non-vanishing spin-density in
the molecule. The spin-density matrix p may be
defined as the difference between the first-order den-
sity matrices associated with « and f electron spins.

p=P—PF (3.19)
and the expectation value of Hy appearing in (3.18)
may be written in terms of p

< 8
P B P> = S i) IOV
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where A and v denote the atomic orbitals. Now, the
un dependence of the right-hand side of eqn (3.20)
is limited to the spin-density matrix. Derivation with
respect to uy gives the reduced coupling constant
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which is generally valid with any type of SCF LCAO
MO procedure. Pople and associates then introduce
the one-centre integral approximation, consistent with
the semi-empirical CNDO and INDO methods. The
matrix elements of d(ry) are set to zero unless
A = v = valence shell s orbital on nucleus N. This
assumption reduces the double sum over atomic orbi-
tals in eqn (3.21) to a single term

8np ,
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The one-centre integral approximation also affects the
calculation of o and § MOs and thus the spin-density
matrix. The implementation of the perturbation in the
SCF scheme simply involves the addition of a quan-
tity

8np

hy = — #N’SP%I'(O)

. (3.23)

to the diagonal Fock matrix elements corresponding
to s orbital of atom N’ for « orbitals; for f orbitals
hy. is subtracted from the analogous matrix elements.
Substituting uy. from (3.23) into (3.22) we obtain

2
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and the last remaining problem is the calculation of
the derivative in eqn (3.24). This is done using the
method of finite differences. Due to the fact that p
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is an odd function of hy., only one hy. value is needed
for the calculation. With a suitable choice of hy the
derivative can be approximated by p; . (hx)/hn and
the final expression for the coupling constant is given
by

(3.25)
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The orbital densities si0) can be obtained from
atomic Hartree-Fock calculations or can be con-
sidered as adjustable parameters. In each case they
can also be made atomic charge dependent. The
values given by Pople et al®? have been obtained
from a least-squares fit of the calculated coupling con-
stants to the experimental ones and are somewhat
larger than the atomic Hartree-Fock values.

In recent years the finite perturbation method using
an INDO approximation has been the most widely
used approach for calculation of the coupling con-
stants and many results obtained with this method
will be reviewed in the Sections dealing with appli-
cations. Here, just a single set of results for the gemi-
nal coupling constant in methane is given. On the
CNDO level 2Jy; = 1.60 Hz is obtained, which goes
down to —6.17 Hz when one-centre exchange inte-
grals are introduced in the INDO approximation.
The experimental value is —12.4 Hz and the FPT
INDO value compares favourably with the sum-over-
states (SOS) results obtained using eqns (3.1) and
(3.12), cf. Table 2. The superiority of the FPT over
the SOS methods at the INDO and CNDO levels
seems to be a general and well-established result.
There is, however, one disturbing point about the
FPT approach. The non-empirical tests of the method
performed (using a minimal STO basis set) by Ost-
lund et al.®® yield much poorer results than those
obtained using semi-empirical methods. To take just
a single example, the geminal coupling obtained for
methane was —58 Hz. For most other cases con-
sidered by Ostlund et al.,® the signs were correct
but the magnitudes were severely overestimated. Since
the non-empirical calculations should be expected to
be more reliable than the semi-empirical ones, this
point should really be investigated in more detail, es-
pecially in view of the tremendous impact made by
the semi-empirical FPT calculations. The reason for
the poor quality of the results is probably the insuffi-
cient flexibility of the minimal basis set.

An alternative computational scheme of the
coupled Hartree-Fock type has been proposed by Bliz-
zard and Santry.®*3% By analogy with FPT, expres-
sion (3.21) is the method’s basic eqn. The derivative
of the spin-density matrix is, however, evaluated in
a different way, i.e. from the first-order correction of
the molecular orbitals. Let ¢/ be a column vector
representing the i-th occupied MO in the space
spanned by the atomic orbital basis and ¢{" a column
vector representing the first-order correction to ¢{”
due to the perturbation pyHy (compare eqns (3.15)

and (3.16)). Using standard second-order perturbation
theory with

F©Oel® = gcl® (3.26)
as the zeroth-order eqn, the expression for c{"
becomes :
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a

F© in eqn (3.26) is the Fock matrix in the absence
of the perturbation and F" is the first-order correc-
tion to the Fock matrix. F*) depends on the first-
order correction to the density matrices for the « and
B electrons, defined in the following way
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Due to the dependence of F¥) on P, eqn (3.27) for
the first-order corrections to the orbitals must be
solved iteratively. When convergence is reached, eqn
(3.28) gives the sought-after value of the derivative
of the spin density matrix. From the symmetry of
the operator Hy, we have

P — _pAD)

<5Pu> — 2P,E(1).
a#N' un-=0 '

Further, Blizzard and Santry®*3% introduced the
INDO approximation with the same assumptions
about the integrals as those of Pople et al.®? The
final expression for the reduced coupling constant
then becomes

(3.29)

and

(3.30)
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It should be pointed out that there is no fundamental
disparity between the methods of Pople et al.5°—3?
and Blizzard and Santry.®#:3% In the former case the
spin density matrix is calculated correctly to the in-
finite order in uy. and then derived with respect
to it at the py = 0 limit. In the later method the
first-order spin density matrix, equal to the derivative
by definition, is computed directly. The differences are
of a computational nature; in this respect the self-con-
sistent perturbation theory (SCPT) of Blizzard and
Santry has the advantage of replacing the tedious and
sometimes slow-to-converge unrestricted SCF pro-
cedure by a series of simple matrix multiplications.

The Blizzard-Santry approach has also been used
on the non-empirical level by Ditchfield and
Snyder.*® The subject of this paper was actually the
anisotropy of the coupling tensor and it will be
reviewed later.



