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PREFACE

The purpose of this encyclopedia is to
provide information about an extensive se-
lection of topics concerned with statistical
theory and the applications of statistical
methods in various more or less scientific
fields of activity. This information is in-
tended primarily to be of value to readers
who do not have detailed information about
the topics but have encountered references
(either by field or by use of specific termi-
nology) that they wish to understand. The
entries are not intended as condensed trea-
tises containing all available knowledge on
each topic. Indeed, we are on guard against
placing too much emphasis on currently
fashionable, but possibly ephemeral, mat-
ters. The selection of topics is also based on
these principles. Nevertheless, the encyclope-
dia was planned on a broad basis—eight
volumes, each of approximately 550 pages—
so that it is possible to give attention to
nearly all the many fields of inquiry in
which statistical methods play a valuable
(although not usually, or necessarily, a pre-
dominant) role.

Beyond the primary purpose of providing
information, we endeavored to obtain arti-
cles that are pleasant and interesting to read
and encourage browsing through the vol-
umes. There are many contributors, for
whose cooperation we are grateful, and a
correspondingly wide range of styles of pre-
sentation, but we hope that each is attractive
in its own way. There is also, naturally and
inevitably, a good deal of variation among

the (mathematical and technical-scientific)
levels of the entries. For some topics, consid-
erable mathematical sophistication is needed
for adequate treatment; for others, it is pos-
sible to avoid heavy reliance on mathemati-
cal formulation.

We realize that even an eight-volume
compendium cannot incorporate all of the
terms, notions, and procedures that have
appeared in statistical literature during the
last century. There are also contributions by
scientists who paved the way, as early as the
seventeenth century, toward the statistical
sciences as they are known today. We en-
deavored to include historical background
and perspective when these seem important
to the development of statistical methods
and ideas.

It is to be expected that most readers will
disagree with the relative amount of empha-
sis accorded to certain fields, and will find
that some topics of considerable interest
have been omitted. While this may reflect a
lack of judgment or knowledge (or both) on
our part, it is inevitable, because each person
has a specific, idiosyncratic viewpoint on
statistical matters (as on others). Our inten-
tion is to mirror the state of the art in the
last quarter of the twentieth century, includ-
ing terms (in particular mathematical) that
found a place in the language of statistical
methodology during its formative years.

We have two ways of cross-referencing:
First, when a possibly unfamiliar term ap-
pears in an entry, reference to another entry
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is indicated by an asterisk, or by direct refer-
ence (e.g., See HISTOGRAMS). An asterisk
sometimes refers to the preceding word but
quite frequently to the preceding phrase. For
example, “ ... random variable*” refers to
the entry on random variables rather than
on variables. We feel that this notation is the
simplest possible. Second, most articles con-
clude with a list of related entries of poten-
tial interest for further reading. These two
sets of cross-references may overlap but are
usually not identical. The starred items are
for utility, whereas the list is more for inter-
est. Neither set is exhaustive and we encour-
age individual initiative in searching out fur-
ther related entries.

Since our primary purpose is to provide
information, we neither avoid controversial
topics nor encourage purely polemic writing,
We endeavor to give fair representation to
different viewpoints but cannot even hope to
approximate a just balance (if such a thing
exists).

In accordance with this primary purpose,
we believe that the imposition of specific
rules of style and format, and levels of pre-
sentation, must be subordinate to the presen-
tation of adequate and clear information.
Also, in regard to notation, references, and
similar minutiae, we did not insist on abso-
lute uniformity although we tried to discour-
age very peculiar deviations that might con-
fuse readers.

College Park, Maryland
Chapel Hill, North Carolina
January 1982

The encyclopedia is arranged lexicograph-
ically in order of entry titles. There are some
inconsistencies; for example, we have
“CHEMISTRY, STATISTICS IN” but
“STATISTICS IN ASTRONOMY.” This
simply reflects the fact that the encyclopedia
is being published serially, and the second of
these entries was not available when the first
volume was in production. (This volume
does, however, contain the “dummy” entry
“ASTRONOMY, STATISTICS IN See sTA-
TISTICS IN ASTRONOMY.”)

We are indeed fortunate that Professor
Campbell B. Read joined us as Associate
Editor on October 1, 1980. Professor Read’s
active participation in the editorial process
and the numerous improvements he contrib-
uted to this project have been invaluable.
The Co-Editors-in-Chief express their sincer-
est appreciation of his expertise.

We also express our thanks to the mem-
bers of the Advisory Board for their valu-
able advice and expert suggestions; to the
Editorial Assistant, Ms. June Maxwell, for
her devotion and for contributions to the
project far beyond the call of duty; and last,
but certainly not least, to all the contribu-
tors, who responded enthusiastically to our
call for partnership in this undertaking.

Unsigned entries are contributed by the
Editors—Samuel Kotz, Norman L. Johnson,
and Campbell B. Read—either jointly or
individually.

SAMUEL Kotz
NorMAN L. JOHNSON



ABAC

A graph from which numerical values may
be read off, usually by means of a grid of
lines corresponding to argument values.

(NOMOGRAM)

ABACUS

A simple instrument to facilitate numerical
computation. There are several forms of
abacus. The one in most common use at
present is represented diagramatically in Fig,
1. It consists of a rectangular framework
ABCD with a cross-piece PQ parallel to the
longer sides, 4B and CD, of the rectangle.
There are a number (at least eight, often
more) of thin rods or wire inserted in the
framework and passing through PQ, parallel
to the shorter sides, AD and BC. On each
rod there are threaded four beads between
CD and PQ, and one bead between PQ and
AB.

Analogously to the meaning of position in
our number system, the extreme right-hand
rod corresponds to units; the next to the left,
tens; the next to the left, hundreds; and
so on. Each bead in the lower rectan-

Figure 1. Diagrammatic representation of the form of
abacus presently in common use.

gle (PQCD) counts for 1, when moved up,
and each bead in the upper rectangle
(ABQP counts for 5. The number shown in
Fig. 2 would be 852 if beads on all rods
except the three extreme right-hand ones are
as shown for the three extreme left-hand
rods (corresponding to “zero”).

The Roman abacus consisted of a metal
plate with two sets of parallel grooves, the
lower containing four pebbles and the upper
one pebble (with a value five times that of

Figure 2. Abacus that would be showing the number
852 if beads on all rods except the three extreme right-
hand ones are as shown for the three extreme left-hand
rods (corresponding to “zero”).
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each pebble in the corresponding groove of
the lower set). The Japanese and Chinese
abacus (still in use) consists of a frame with
beads on wires. The Russian abacus, which
originated in the sixteenth century (the mod-
ern version in the eighteenth century), is also
still in use.

Bibliography
Dilson, J. (1968). The Abacus: A Pocket Computer. St.
Martin’s Press, New York.

Gardner, M. (1979). Mathematical Circus. Alfred A.
Knopf, New York, Chap. 18.

Pullan, 1. (1969). The History of the Abacus. F. A.
Praeger, New York.

ABBE, ERNST
Born: January 23, 1840, in
Eisenach, Germany.

Died: January 14, 1905, in Jena,
Germany.

Contributed to: theoretical and ap-
plied optics, astronomy, mathemati-
cal statistics.

The recognition of Abbe’s academic talent
by those in contact with him overcame a
childhood of privation and a financially pre-
carious situation very early in his academic
career, when he completed “On the Law
of Distribution of Errors in Observation
Series,” his inaugural dissertation for attain-
ing a lectureship at'Jena University at the
age of 23 [1]. This dissertation, partly moti-
vated by the work of C. F. Gauss*, seems to
contain his only contributions to the proba-
bility analysis of observations subject to er-
ror.These contributions constitute a remark-
able anticipation of later work in distribu-
tion theory and time-series* analysis, but
they were overlooked until the late 1960s
[5,8], and almost none of the early bib-
liographies on probability and statistics (a
notable exception being ref. 10) mention this
work. In 1866, Abbe was approached by
Carl Zeiss, who asked him to establish a
scientific basis for the construction of
microscopes; this was the beginning of a

relationship that lasted throughout his life,
and from this period on his main field of
activity was optics [9] and astronomy.

Abbe shows, first, that the quantity A
= 2’,.'=IZ,-2, where Z,, i=1,...,n, are n
independently and identically distributed
N(0,1) random variables, is described by a
chi-square* density with n degrees of free-
dom [5,8], although this discovery should
perhaps be attributed to I. J. Bienaymé*
{4]. Second, again initially by means of a
“discontinuity factor” and then by complex
variable methods, Abbe obtains the distribu-
tion of ® =37_,(Z; — ZjH)Z, where Z,
= Z,, and ultimately that of ® /A, a ratio of
quadratic forms* in Z,,..., Z, very close
in nature to the definition of what is now
called the first circular serial correlation co-
efficient, * and whose distribution under the
present conditions is essentially that used to
test the null hypothesis of Gaussian white
noise* against a first-order autoregression
alternative, in time-series* analysis [3]. (The
distribution under such a null hypothesis
was obtained by R. L. Anderson in 1942,
Knopf [6] expresses Abbe’s intention in his
dissertation as being to seek a numerically
expressible criterion to determine when dif-
ferences between observed and sought val-
ues in a series of observations are due to
chance alone.

References

[1] Abbe, E. (1863). Uber die Gesetzmassigkeit der
Vertheilung der Fehler bei Beobachtungsreihen.
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Phys. Ges., 7, 89-121]

[7] Rohr, L. O. M. von (1940). Ernst Abbe. G.
Fischer, Jena. (Not seen.)

[8] Sheynin, O. B. (1966). Nature (Lond.), 211, 1003—
1004. (Notes Abbe’s derivation of the chi-square
density.)

[9] Volkman, H. (1966). Appl. Opt., 5, 1720-1731.
(An English-language account of Abbe’s life and
contributions to pure and applied optics; contains
two photographs of Abbe, and further bibliogra-
phy.)

[10] Wolffing, E. (1899). Math. Naturwiss. Ver.
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[Supplements the comprehensive bibliography
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ABEL’S FORMULA

(Also known as the Abel identity.) If each
term of a sequence of real numbers {q;}
can be represented in the form g, = b,
i=1,...

,n, then a;+a,+ -+ +a, can
be expressed as

S|(bl - bz) + S2(b2_ b3) + .-
+sn—l(bn—l - bn)’

where 5; = ¢, + - - - + ¢,. Equivalently,

m
+ kZ Bi(cx — Chyr)s
=n

where B, = S%_, b,.

This representation is usually referred to
as Abel’s formula, due to Norwegian mathe-
matician Niels Henrik Abel (1802-1829).
(The continuous analog of this formula is
the formula of integration by parts.) It is
useful for manipulations with finite sums.

ABSOLUTE CONTINUITY 3

Bibliography
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ABSOLUTE ASYMPTOTIC EFFI-
CIENCY (AAE) See ESTIMATION, POINT

ABSOLUTE CONTINUITY (of
Measures on Infinite-Dimensional
Linear Spaces)

Absolute continuity of measures, the Ra-
don-Nikodym theorem*, and the Radon-
Nikodym derivative* are subjects properly
included in any basic text on measure and
integration. However, both the mathematical
theory and the range of applications can
best be appreciated when the measures are
defined on an infinite-dimensional linear to-
pological space. For example, this setting is
generally necessary if one wishes to discuss
hypothesis testing* for stochastic processes
with infinite parameter set. In this article we
first define basic concepts in the area of
absolute continuity, state general conditions
for absolute continuity to hold, and then
specialize to the case where the two mea-
sures are defined on either a separable Hil-
bert space or on an appropriate space of
functions. Particular attention is paid to
Gaussian measures.

The following basic material is discussed
in many texts on measure theory; see, e.g.,
tef. 23. Suppose that (2, B) is a measurable
space, and that p, and p, are two probability
measures on (£, ). g, is said to be abso-
lutely continuous with respect to p, (m,
<uy) if 4 in B and p,(4) =0 imply that
p,(A4)=0. This is equivalent to the follow-
ing: p; <, if and only if for every € >0
there exists 6§ >0 such that py(4) < 8 im-
plies that p,(A4) < e. Similar definitions of
absolute continuity can be given for non-
finite signed measures; this article, however,
is restricted to probability measures. When
p, < 4y, the Radon-Nikodym theorem
states that there exists a real-valued g-
measurable function f such that p,(A4)
= [, fdu, for all 4 in B. The function f,
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which belongs to L,[2, B, u,] and is unique
up to py-equivalence, is called the Radon-
Nikodym derivative of p, with respect to u,,
and is commonly denoted by du,/dp,. In
statistical and engineering applications
du,/dp, is usually called the likelihood
ratio*, a term that has its genesis in maxi-
mum likelihood estimation*.

Absolute continuity and the Radon-
Nikodym derivative have important applica-
tions in statistics. For example, suppose that
X :2->R" is a random vector. Suppose also
that under hypothesis H, the distribution
function of X is given by F,=p, o
XV [Fy(x)= p{w:X(@) < x}], whereas
under H,, X has the distribution function
F,=p,0 X' F, defines a Borel measure
on R'; one says that F, is induced from g, by
X. A statistician observes one realization
(sample path) of X, and wishes to design a
statistical test to optimally decide in favor of
H,| or H,. Then, under any of several classi-
cal decision criteria of mathematical statis-
tics (e.g., Bayes risk, Neyman-—Pearson*,
minimum probability of error), an optimum
decision procedure* when g, < u, is to form
the test statistic* A(X) =[dF,/dF,)(X) and
compare its value with some constant, C,;
the decision is then to accept H, if A(X)
< Gy, accept H, if A(X) > C,. The value of
C, will depend on the properties of F, and
F, and on the optimality criterion. For more
details, see HYPOTHESIS TESTING*.!

Two probability measures y, and u, on
(&, B) are said to be equivalent (p,~p,) if
py <€ py and p, < p,. They are orthogonal, or
extreme singular (u, L p,) if there exists a set
A in B such that py(4)=0 and p(4)= 1.
For the hypothesis-testing problem discussed
above, orthogonal induced measures permit
one to discriminate perfectly between H,
and H,. In many practical applications,
physical considerations rule out perfect dis-
crimination. The study of conditions for ab-
solute continuity then becomes important
from the aspect of verifying that the mathe-
matical model is valid.

In the framework described, the random
vector has range in RY. However, absolute
continuity, the Radon-Nikodym derivative,

and their application to hypothesis-testing
problems are not limited to such finite-
dimensional cases. In fact, the brief com-
ments above on hypothesis testing apply
equally well when X takes its value in an
infinite-dimensional linear topological space,
as when X(w) represents a sample path*
from a stochastic process* (X,), ¢ €[a,b].
(The infinite-dimensional case does intro-
duce interesting mathematical complexities
that are not present in the finite-dimensional
case.)

GENERAL CONDITIONS FOR ABSOLUTE
CONTINUITY

We shall see later that special conditions for
absolute continuity can be given when the
two measures involved have certain special-
ized properties, e.g., when they are both
Gaussian, However, necessary and sufficient
conditions for absolute continuity can be
given that apply to any pair of probability
measures on any measurable space (£, 8).
Further, if (2, B) consists of a linear topo-
logical space £ and the smallest o-field 8
containing all the open sets (the Borel o-
field), then additional conditions for abso-
lute continuity can be obtained that apply to
any pair of probability measures on (2, 8).
Here we give one well-known set of general
necessary and sufficient conditions. First, re-
call that if (R, B,P) is a probability space
and F a collection of real random variables
on (£, B), then F is said to be uniformly
integrable with respect to P [23] if the inte-
grals [, jwsa | f@|dP@W), ¢ >0, fin F,
tend uniformly to zero as ¢ = . An equiva-
lent statement is the following: F is uni-
formly integrable (P) if and only if

(a) sup fg | f()|dP (w) < o0
and

(b) For every € > 0 there exists § > 0 such
that P(A4) < & implies that

sup [ | f(@)|dP(@) < «



Theorem 1. Suppose that i, and g, are two
probability measures on a measurable space
(@, B8). Suppose that {%,, n > 1} is an in-
creasing family of sub-o-fields of 8 such that
B is the smallest o-field containing U ,%,.
Let p" be the restriction of y, to %,. Then
B < @y if and only if

(2) B < pg
and
(b)  {du’/dp;.n>1}

is uniformly integrable ( ).

When g, < p,, then du,/dp, = lim, dul'/dp)
almost everywhere (a.e.) dy,.

foralln > 1,

Condition (a) of Theorem 1 is obviously
necessary. The necessity of (b) follows from
the fact that {dp)'/dpj, %, :n > 1} is a mar-
tingale* with respect to p,. This property,
and the martingale convergence theorem,
yield the result that dp, /dy, = lim, dp{' / dp;
a.e. du,. Sufficiency of (a) and (b) follows
from the second definition of uniform inte-
grability given above and the assumption
that B is the smallest o-field containing
u,%,.
Conditions (a) and (b) of Theorem 1 are
also necessary and sufficient for p, < p,
when the family of increasing o-fields (%,)
has any directed index set.

A number of results frequently used to
analyze absolute continuity can be obtained
from Theorem 1. This includes, for example,
Hajek’s divergence criterion [20] and Ka-
kutani’s theorem on equivalence of infinite
product measures [29] (a fundamental result
in its own right).

The conditions of Theorem 1 are very
general. However, in one respect they are
somewhat unsatisfactory. They usually re-
quire that one specify an infinite sequence of
Radon-Nikodym derivatives {du{/duj,
n > 1}. It would be preferable to have a
more direct method of determining if abso-
lute continuity holds. One possible alterna-
tive when the measures are defined on a
separable metric space involves the use of
chacteristic functions*. The characteristic
function of a probability measure defined on
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the Borel o-field of a separable metric space
completely and uniquely specifies the mea-
sure [38]. Thus in such a setting, two charac-
teristic functions contain all the information
required to determine whether absolute con-
tinuity exists between the associated pair of
measures. The use of characteristic functions
offers a method for attacking the following
problem. For a given measure p on (£, 8)
determine the set @, of all probability mea-
sures on (§2, B) such that y <« pu for all » in
9, Some results on this problem are con-
tained in ref. 3; further progress, especially
detailed results for the case of a Gaussian
measure ¢ on Hilbert space, would be useful
in several important applications areas (de-
tection of signals in noise, stochastic filter-
ing*, information theory¥*).

PROBABILITY MEASURES ON HILBERT
SPACES

There has been much recent activity in the
study of probability measures on Banach
spaces [1, 4, 5, 31]. Here we restrict attention
to the case of probabilities on Hilbert
spaces; this is the most important class of
Banach spaces for applications, and the the-
ory is relatively well developed in this set-
ting.

Let H be a real separable Hilbert space
with inner product (-, > and Borel o-field
T'. Let u be a probability measure on I'. For
any element y in H, define the distribution
.function F, by F (@) =p{x:{y,xp<a), a
in (— o0, 00). p is said to be Gaussian if F, is
Gaussian for all y in H. It can be shown that
for every Gaussian p there exists a self-
adjoint trace-class nonnegative linear opera-
tor R, in H and an element m, in H such
that

{my = [H {p, x> du(x) (1)
and
(R, 0> = fH Cy— my,xy(o — m, x)du(x)
)

for all y and v in H. R, is called the covari-
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ance (operator) of p, and m, is the mean
(element). Conversely, to every self-adjoint
nonnegative trace-class operator R, and ele-
ment m in H there corresponds a unique
Gaussian measure p such that relations (1)
and (2) are satisfied. Non-Gaussian mea-
sures u may also have a covariance operator
R, and mean element m, satisfying (1) and

"
(2); however, the covariance R, need not be

trace-class. For more details o”n probability
measures on Hilbert space, see refs. 17, 38,
and 53.

Elegant solutions to many problems of
classical probability theory (and applica-
tions) have been obtained in the Hilbert
space framework, with methods frequently
making use of the rich structure of the the-
ory of linear operators. Examples of such
problems include Sazanov’s solution to ob-
taining necessary .and sufficient conditions
for a complex-valued function on H to be a
characteristic function* [49]; Prohorov’s
conditions for weak compactness of families
of probability measures, with applications to
convergence of stochastic processes [43]; the
results of Mourier on laws of large numbers*
[34]; the results of Fortét and Mourier on
the central limit theorem* [15,34]; and con-
ditions for absolute continuity of Gaussian
measures. The latter problem is examined in
some detail in the following section. The
study of probability theory in a Hilbert
space framework received much of its impe-
tus from the pioneering work of Fortét and
Mourier (see refs. 15 and 34, and the refer-
ences cited in those papers). Their work led
not only to the solution of many interesting
problems set in Hilbert space, but also to
extensions to Banach spaces and more gen-
eral linear topological spaces [1,4,5, 15,31,
34].

The infinite-dimensional Hilbert spaces H
most frequently encountered in applications
are L,[0,T] (T < o0) and /,. For. a discus-
sion of how Hilbert spaces frequently arise
in engineering applications, see STATISTICAL
COMMUNICATION THEORY. In particular, the
interest in Gaussian measures on Hilbert
space has much of its origin in hypothesis-
testing and estimation problems involving

stochastic processes: detection and filtering
of signals embedded in Gaussian noise. For
many engineering applications, the noise can
be realistically modeled as a Gaussian sto-
chastic process with sample paths almost
surely (a.s.) in L,[0, T] or a.s. in /,. When H
is L,[0, T], a trace-class covariance operator
can be represented as an integral operator
whose kernel is a covariance function. Thus
suppose that (X)), t € [0, T], is a measurable
zero-mean stochastic process on (£, 8, P),
inducing the measure p on the Borel o-field
of L,)[0,T]; p(d)=P{w:X(w) € A}. Then
E [FXXw)dt < oo if and only if p has a
trace-class covariance operator R, defined
by [RfI(0) = [IR(,5)f(s)ds, f in Lyf0,T],
where R is the covariance function of (X,).
If R, is trace-class, then E TXX(w)dt = trace
R

e

ABSOLUTE CONTINUITY OF
PROBABILITY MEASURES ON
HILBERT SPACE

If H is finite-dimensional and p, and p, are
two zero-mean Gaussian measures on I, it 1s
easy to see that u, and p, are equivalent if
and only if their covariance matrices have
the same range space. However, if H is in-
finite-dimensional, this condition (on the
ranges of the covariance operators) is neither
necessary nor sufficient for g,~p,. The
study of conditions for absolute continuity
of two Gaussian measures on function space
has a long and active history. Major early
contributions were made by Cameron and
Martin {6,7] and by Grenander [18]. The
work of Cameron and Martin was con-
cerned with the case when one measure is
Wiener measure (the measure induced on
C[0, 1] by the Wiener process*) and the sec-
ond measure is obtained from Wiener mea-
sure by an affine transformation. Grenander
obtained conditions for absolute continuity
of a Gaussian measure (induced by a sto-
chastic process with continuous covariance)
with respect to a translation. Segal [50] ex-
tended the work of Cameron and Martin to
a more general class of affine transforma-



tions of Wiener measure. Segal also obtained
[50] conditions for absolute continuity of
Gaussian “weak distributions.” These neces-
sary and sufficient conditions can be readily
applied to obtain sufficient conditions for
equivalence of any pair of Gaussian mea-
sures on H; they can also be used to show
that these same conditions are necessary.
Complete and general solutions to the abso-
lute continuity problem for Gaussian mea-
sures were obtained by Feldman [12] and
Haéjek [21]. Their methods are quite differ-
ent. The main result, in each paper, consists
of two parts: a “dichotomy theorem,” which
states that any two Gaussian measures are
either equivalent or orthogonal; and condi-
tions that are necessary and sufficient for
equivalence. The following theorem for
Gaussian measures on Hilbert space is a
modified version of Feldman’s result [12];
several proofs have been independently ob-
tained (Kallianpur and Oodaira [30], Rao
and Varadarajan [44], Root [45]).

Theorem 2. Suppose that p; and p, are two
Gaussian measures on I, and that p, has
covariance operator R, and mean m;, i =1,
2. Then:

1 either p;~p, or p, L p,;
2 pu,~p, if and only if all the following
conditions are satisfied:
(2) range (R,’?) = range (R}/?);
(b) R, = R)/*(I + T)R,/?, where I is
the identity on H and T is a Hil-
bert—Schmidt operator in H:

() m, — m, is in range (R,/?).

Various specializations of Theorem 2 have
been obtained; see the references in refs. 8
and 47. Two of the more interesting special
cases, both extensively analyzed, are the fol-
lowing: (1) both measures induced by sta-
tionary Gaussian stochastic processes; (2)
one of the measures is Wiener measure. In
the former case, especially simple conditions
can be given when the two processes have
rational spectral densities; see the papers by
Feldman [13], Hajek [22], and Pisarenko [40,
41]. In this case, when the two measures
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have the same mean function, p;~py, if and
only if limp_,, fi(A)/f(A) =1, where f; is
the spectral density* of the Gaussian process
inducing p,. Moreover, this occurs if and
only if the operator T appearing in Theorem
2 is also trace-class [22]. For the case where
one of the measures is Wiener measure, see
the papers by Shepp [51], Varberg [54, 55],
and Hitsuda [24].

The problem of determining the Radon-
Nikodym derivative for two equivalent
Gaussian measures on a Hilbert space has
been studied, especially by Rao and Vara-
darajan [44]. For convenience, we use the
notation of Theorem 2 and assume now that
all covariance operators are strictly positive.
In the case where the Hilbert space is finite-
dimensional, the log of the Radon-Nikodym
derivative dy,/du, (log-likelihood ratio*) is
easily seen to be a quadratic-linear form;
that is, log A(X) = (x, Wx) + {(x,b)> + con-
stant, where the linear operator W
= LR, ' =R, b=R{'m, — R;'m,
and log = log,. However, when H is infinite-
dimensional, the log-likelihood ratio need
not be a quadratic-linear form defined by a
bounded linear operator. This holds true
even if the operator T of Theorem 2 is not
only Hilbert-Schmidt, but is also trace class.
However, when T is Hilbert-Schmidt, one
can always express the log of the Radon-
Nikodym derivative as an almost surely con-
vergent series [44]. The essential difficulty in
characterizing the likelihood ratio for infini-
te-dimensional Hilbert space is that the op-
erators R, and R, cannot have bounded in-
verses and these two inverses need not have
the same domain of definition. Even if range
(R)) = range(R,), so that R, ' — R ! is de-
fined on range (R,), it is not necessary that
R, ' — R, ' be bounded on range (R,).

In the finite-dimensional case, if R; = R,,
then log A(X) = {(x,b) + constant, with b
defined as above, so that the log-likelihood
ratio is a bounded linear form. This need not
be the case for infinite-dimensional Hilbert
space; in general, log A(X) will be a
bounded linear form (when R, = R,) if and
only if m, — m, is in the range of R,. As can
be seen from Theorem 1, this condition is
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strictly stronger than the necessary and suffi-
cient condition for p,~p,, which (with R,
= R,) is that m, — m, be in range (R,/?).

If the two measures are induced by sta-
tionary Gaussian processes with rational
spectral densities, expressions for the likeli-
hood ratio can be given in terms of the
spectral densitites; see the papers by
Pisarenko [41] and Hajek [22].

In many applications, only one of the two
measures can be considered to be Gaussian.
For this case, a useful sufficient condition
for absolute continuity is given in ref. 2. This
condition can be applied when the two mea-
sures are induced by stochastic processes
(X,) and (Y,), where (Y,) is a function of
(X,) and a process (Z,) that is independent
of (X,). In particular, if (X,) is Gaussian and
(Y)=(X, + Z), then conditions for abso-
lute continuity can be stated in terms of
sample path properties of the (Z,) process
(absolute continuity, differentiability, etc.).
Such conditions can often be verified in
physical models by knowledge of the mecha-
nisms generating the observed data, when
the distributional properties of the (Z,) pro-
cess are unknown. When (X)) is the Wiener
process on [0,T], conditions for absolute
continuity of the induced measures on L,[0,
T] can be obtained from the results of refs.
10, 27, and 28. Some of these results do not
require independence of (X,) and (Z).

Other results on absolute continuity of
measures on Hilbert space have been ob-
tained for infinitely divisible measures [16],
measures induced by stochastic processes
with independent increments [16], admissible
translations of measures [42,52], and for a
fixed measure and a second measure ob-
tained from the first measure by a nonlinear
transformation [16]. With respect to admissi-
ble translates, Rao and Varadarajan [44]
have shown that if p is a zero-mean measure
having a trace-class covariance operator, R,
then the translate of p by an element y is
orthogonal to g if y is not in range (R'/?). A
number of these results are collected in the
book by Gihman and Skorohod [17], which
also contains much material on basic proper-
ties of probability measures on Hilbert

space, and on weak convergence*. The book
by Kuo [33] contains not only basic material
on probability measures on Hilbert spaces
(including absolute continuity), but also an
introduction to some topics in probability on
Banach spaces.

ABSOLUTE CONTINUITY OF
MEASURES INDUCED BY
STOCHASTIC PROCESSES

Many problems involving stochastic pro-
cesses are adequately modeled in the frame-
work of probability measures on Hilbert
space, provided that the sample paths of
each process of interest belong almost surely
to some separable Hilbert space. However,
this condition is not always satisfied; even
when it is satisfied, one may prefer condi-
tions for absolute continuity stated in terms
of measures on R” (the space of real-valued
functions on T), where T is the parameter
set of the process. For example, a class of
stochastic processes frequently considered
are those having almost all paths in D[0,1].
DO, 1] is the set of all real-valued functions
having limits from both left and right exist-
ing at all points of (0,1), with either left-
continuity or right-continuity at each point
of (0, 1), and with a limit from the left (right)
existing at 1(0). D[0,1] is a linear metric
space* under the Skorohod metric [38], but
this metric space is not a Hilbert space.

The general conditions for absolute conti-
nuity stated in Theorem 1 apply in any
setting. Moreover, necessary and sufficient
conditions for equivalence of measures
(most frequently on R”) induced by two
Gaussian stochastic processes can be stated
in a number of ways: The reproducing ker-
nel Hilbert space (r.k.H.s.) of the two covari-
ance functions [30, 37, 39]; operators and ele-
ments in an L, space of real-valued random
functions [12]; operators and elements in an
L,-space of random variables [46]; and ten-
sor products [35]. Hajek’s conditions for ab-
solute continuity in terms of the divergence
[21] apply to the general case. Sato [48] has
stated conditions for absolute continuity in



terms of a representation for all Gaussian
processes whose induced measure on R” is
equivalent to the measure induced by a
given Gaussian process. Several of these re-
sults are presented in [8]. Many other papers
on absolute continuity for measures induced
by two Gaussian processes have appeared;
space does not permit an attempt at a com-
plete bibliography.

Use of the r.k.H.s. approach to study lin-
ear statistical problems in stochastic pro-
cesses was first explicitly and systematically
employed by Parzen; the r.k.H.s. approach
was also implicit in the work of Hijek (see
the papers by Hajek [22] and Parzen [39]
and their references).

For non-Gaussian processes, resuits on
absolute continuity have been obtained for
Markov processes* [16,32], diffusion pro-
cesses* [36], locally infinitely divisible pro-
cesses [16], semimartingales* [25], point pro-
cesses* [26], and non-Gaussian processes
equivalent to the Wiener process [9,10,27,
28].

Dudley’s result [9] is of particular interest
to researchers interested in Gaussian mea-
sures. Suppose that (W) is the Wiener pro-
cess on [0, 1] with zero mean and unity vari-
ance parameter, and that 8(-, ) is a contin-
uous real-valued function on R X [0, I]. Let
Y, = B(W,,t). Dudley shows in ref. 9 that
the measure on function space induced by
(Y,) is absolutely continuous with respect to
Wiener measure if and only if B(u,f) = u +
¢(2) or B(u,t) = —u + ¢(f), where ¢ is in the
r.k.Hs. of the Wiener covariance min(t,s).
The methods used to prove this result rely
heavily on some of the special properties of
the Wiener process, such as the fact that
(W,) has the strong Markov property*, and
laws of the iterated logarithm* for the Wie-
ner process (obtained in ref. 9). A character-
ization of admissible 8’s for other Gaussian
processes with continuous paths would be of
much interest; such characterizations would
necessarily require a different approach, and
this problem is very much open at present.

The absolute continuity problem dis-
cussed in refs. 10, 27, and 28 has received
much attention, partly because of its connec-
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tion to signal detection* and nonlinear filter-
ing*. One considers a measurable process
(Y) defined by Y, = [(hds+ W, 0<t
< T, where (W) is a zero-mean Wiener pro-
cess and (A is a stochastic process with
sample paths a.s. in L,[0, T]. Let yu, and py
be the measures induced by (Y,) and (W)
on the space of continuous functions on
{0, 1]. Conditions for py < py, py~py, and
results on the Radon-Nikodym derivative
have been obtained in refs. 10, 27, and 28.
In the special case where (4,) is independent
of (W), a sufficient condition for p,~p,, is
that [Jh2ds < co for almost all sample paths
of (hy). This condition is also sufficient for
Ry < pyy if the process (h,) is only assumed
independent of future increments of (W)).

Finally, we mention a result of Fortét [14],
who has obtained a sufficient condition for
orthogonality of two measures when one is
Gaussian, expressed in terms of the r.k.H.s.
of the two covariances. Suppose that g, is a
probabliity measure on RY, T =[0,1], with
r.k.H.s. H; and mean function m;. Then if p,
is Gaussian, u; and p, are orthogonal unless
both the following conditions are satisfied:
(a) H C H,; and (b) m; — m, € H,.

NOTE

1. The ubiquitous nature of the Radon-
Nikodym derivative in various hypothesis-testing
applications can be attributed to its being a nec-
essary and sufficient statistic* [11].
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