Chapman & Hall/CRC

Computational Science Series

_Introduction to
ngh Performance
Computing for
Scientists and Engineers

Georg Hager
Gerhard Wellein

@ CRC Press

A CHAPMAN & HALL BOOK



Introduction to
High Performance
Computing for
Scientists and Engineers

w, b, v v‘:“j
N
—t N
y. JJ .‘,E:{{..

Ge
Gerhard Wellein

c,;c CRC Press

Taylor & Francis Group
Bo n London New York

CRC Press is an imprint of the
Taylor & Francis Group an informa business

A CHAPMAN & HALL BOOK



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number: 978-1-4398-1192-4 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Hager, Georg.
Introduction to high performance computing for scientists and engineers / Georg
Hager and Gerhard Wellein.
p.cm. -- (Chapman & Hall/CRC computational science series ; 7)
Includes bibliographical references and index.
ISBN 978-1-4398-1192-4 (alk. paper)
1. High performance computing. 1. Wellein, Gerhard. I1. Title.

QA76.88.H34 2011
004".35--dc22 2010009624

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Introduction to
High Performance
Computing for
Scientists and Engineers



Chapman & Hall/CRC

Computational Science Series

SERIES EDITOR

Horst Simon
Associate Laboratory Director, Computing Sciences
Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks.
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest
theories and experimentation. The scope of the series includes, but is not limited to, titles in the
areas of scientific computing, parallel and distributed computing, high performance computing,
grid computing, cluster computing, heterogeneous computing, quantum computing, and their
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil
exploration, and weather forecasting.

PUBLISHED TITLES

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO SCHEDULING

Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®
Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS, Georg Hager and Gerhard Wellein



Dedicated to Konrad Zuse (1910-1995)

He developed and built the world’s first fully automated, freely programmable
computer with binary floating-point arithmetic in 1941.



Foreword

Georg Hager and Gerhard Wellein have developed a very approachable introduction
to high performance computing for scientists and engineers. Their style and descrip-
tions are easy to read and follow.

The idea that computational modeling and simulation represent a new branch of
scientific methodology, alongside theory and experimentation, was introduced about
two decades ago. It has since come to symbolize the enthusiasm and sense of im-
portance that people in our community feel for the work they are doing. Many of us
today want to hasten that growth and believe that the most progressive steps in that di-
rection require much more understanding of the vital core of computational science:
software and the mathematical models and algorithms it encodes. Of course, the
general and widespread obsession with hardware is understandable, especially given
exponential increases in processor performance, the constant evolution of processor
architectures and supercomputer designs, and the natural fascination that people have
for big, fast machines. But when it comes to advancing the cause of computational
modeling and simulation as a new part of the scientific method there is no doubt that
the complex software “ecosystem” it requires must take its place on the center stage.

At the application level science has to be captured in mathematical models, which
in turn are expressed algorithmically and ultimately encoded as software. Accord-
ingly, on typical projects the majority of the funding goes to support this translation
process that starts with scientific ideas and ends with executable software, and which
over its course requires intimate collaboration among domain scientists, computer
scientists, and applied mathematicians. This process also relies on a large infrastruc-
ture of mathematical libraries, protocols, and system software that has taken years to
build up and that must be maintained, ported, and enhanced for many years to come if
the value of the application codes that depend on it are to be preserved and extended.
The software that encapsulates all this time, energy, and thought routinely outlasts
(usually by years, sometimes by decades) the hardware it was originally designed to
run on, as well as the individuals who designed and developed it.

This book covers the basics of modern processor architecture and serial optimiza-
tion techniques that can effectively exploit the architectural features for scientific
computing. The authors provide a discussion of the critical issues in data movement
and illustrate this with examples. A number of central issues in high performance
computing are discussed at a level that is easily understandable. The use of parallel
processing in shared, nonuniform access, and distributed memories is discussed. In
addition the popular programming styles of OpenMP, MPI and mixed programming
are highlighted.

Xiii



X1V

We live in an exciting time in the use of high performance computing and a pe-
riod that promises unmatched performance for those who can effectively utilize the
systems for high performance computing. This book presents a balanced treatment of
the theory, technology, architecture, and software for modern high performance com-
puters and the use of high performance computing systems. The focus on scientific
and engineering problems makes it both educational and unique. I highly recom-
mend this timely book for scientists and engineers, and I believe it will benefit many
readers and provide a fine reference.

Jack Dongarra

University of Tennessee
Knoxville, Tennessee
USA



Preface

When Konrad Zuse constructed the world’s first fully automated, freely pro-
grammable computer with binary floating-point arithmetic in 1941 [H129], he had
great visions regarding the possible use of his revolutionary device, not only in sci-
ence and engineering but in all sectors of life [H130]. Today, his dream is reality:
Computing in all its facets has radically changed the way we live and perform re-
search since Zuse’s days. Computers have become essential due to their ability to
perform calculations, visualizations, and general data processing at an incredible,
ever-increasing speed. They allow us to offload daunting routine tasks and commu-
nicate without delay.

Science and engineering have profited in a special way from this development.
It was recognized very early that computers can help tackle problems that were for-
merly too computationally challenging, or perform virfual experiments that would
be too complex, expensive, or outright dangerous to carry out in reality. Computa-
tional fluid dynamics, or CFD, is a typical example: The simulation of fluid flow in
arbitrary geometries is a standard task. No airplane, no car, no high-speed train, no
turbine bucket enters manufacturing without prior CFD analysis. This does not mean
that the days of wind tunnels and wooden mock-ups are numbered, but that com-
puter simulation supports research and engineering as a third pillar beside theory and
experiment, not only on fluid dynamics but nearly all other fields of science. In re-
cent years, pharmaceutical drug design has emerged as a thrilling new application
area for fast computers. Software enables chemists to discover reaction mechanisms
literally at the click of their mouse, simulating the complex dynamics of the large
molecules that govern the inner mechanics of life. On even smaller scales, theoreti-
cal solid state physics explores the structure of solids by modeling the interactions of
their constituents, nuclei and electrons, on the quantum level [A79], where the sheer
number of degrees of freedom rules out any analytical treatment in certain limits and
requires vast computational resources. The list goes on and on: Quantum chromody-
namics, materials science, structural mechanics, and medical image processing are
just a few further application areas.

Computer-based simulations have become ubiquitous standard tools, and are in-
dispensable for most research areas both in academia and industry. Although the
power of the PC has brought many of those computational chores to the researcher’s
desktop, there was, still is and probably will ever be this special group of people
whose requirements on storage, main memory, or raw computational speed cannot
be met by a single desktop machine. High performance parallel computers come to
their rescue.

Xv



XVi

Employing high performance computing (HPC) as a research tool demands at
least a basic understanding of the hardware concepts and software issues involved.
This is already true when only using turnkey application software, but it becomes
essential if code development is required. However, in all our years of teaching and
working with scientists and engineers we have learned that such knowledge is volatile
— in the sense that it is hard to establish and maintain an adequate competence level
within the different research groups. The new PhD student is all too often left alone
with the steep learning curve of HPC, but who is to blame? After all, the goal of
research and development is to make scientific progress, for which HPC is just a
tool. It is essential, sometimes unwieldy, and always expensive, but it is still a tool.
Nevertheless, writing efficient and parallel code is the admission ticket to high per-
formance computing, which was for a long time an exquisite and small world. Tech-
nological changes have brought parallel computing first to the departmental level and
recently even to the desktop. In times of stagnating single processor capabilities and
increasing parallelism, a growing audience of scientists and engineers must be con-
cerned with performance and scalability. These are the topics we are aiming at with
this book, and the reason we wrote it was to make the knowledge about them less
volatile.

Actually, a lot of good literature exists on all aspects of computer architecture,
optimization, and HPC [S1, R34, S2, S3, S4]. Although the basic principles haven’t
changed much, a lot of it is outdated at the time of writing: We have seen the decline
of vector computers (and also of one or the other highly promising microprocessor
design), ubiquitous SIMD capabilities, the advent of multicore processors, the grow-
ing presence of ccNUMA, and the introduction of cost-effective high-performance
interconnects. Perhaps the most striking development is the absolute dominance of
x86-based commodity clusters running the Linux OS on Intel or AMD processors.
Recent publications are often focused on very specific aspects, and are unsuitable
for the student or the scientist who wants to get a fast overview and maybe later dive
into the details. Our goal is to provide a solid introduction to the architecture and pro-
gramming of high performance computers, with an emphasis on performance issues.
In our experience, users all too often have no idea what factors limit time to solution,
and whether it makes sense to think about optimization at all. Readers of this book
will get an intuitive understanding of performance limitations without much com-
puter science ballast, to a level of knowledge that enables them to understand more
specialized sources. To this end we have compiled an extensive bibliography, which
is also available online in a hyperlinked and commented version at the book’s Web
site: http://www.hpc.rrze.uni-erlangen.de/HPC4SE/.

Who this book is for

We believe that working in a scientific computing center gave us a unique view
of the requirements and attitudes of users as well as manufacturers of parallel com-
puters. Therefore, everybody who has to deal with high performance computing may



Xvii

profit from this book: Students and teachers of computer science, computational en-
gineering, or any field even marginally concerned with simulation may use it as an
accompanying textbook. For scientists and engineers who must get a quick grasp of
HPC basics it can be a starting point to prepare for more advanced literature. And
finally, professional cluster builders can definitely use the knowledge we convey to
provide a better service to their customers. The reader should have some familiarity
with programming and high-level computer architecture. Even so, we must empha-
size that it is an introduction rather than an exhaustive reference; the Encyclopedia
of High Performance Computing has yet to be written.

What’s in this book, and what’s not

High performance computing as we understand it deals with the implementations
of given algorithms (also commonly referred to as “code”), and the hardware they
run on. We assume that someone who wants to use HPC resources is already aware
of the different algorithms that can be used to tackle their problem, and we make
no attempt to provide alternatives. Of course we have to pick certain examples in
order to get the point across, but it is always understood that there may be other, and
probably more adequate algorithms. The reader is then expected to use the strategies
learned from our examples.

Although we tried to keep the book concise, the temptation to cover everything is
overwhelming. However, we deliberately (almost) ignore very recent developments
like modern accelerator technologies (GPGPU, FPGA, Cell processor), mostly be-
cause they are so much in a state of flux that coverage with any claim of depth would
be almost instantly outdated. One may also argue that high performance input/out-
put should belong in an HPC book, but we think that efficient parallel I/O is an
advanced and highly system-dependent topic, which is best treated elsewhere. On
the software side we concentrate on basic sequential optimization strategies and the
dominating parallelization paradigms: shared-memory parallelization with OpenMP
and distributed-memory parallel programming with MPI. Alternatives like Unified
Parallel C (UPC), Co-Array Fortran (CAF), or other, more modern approaches still
have to prove their potential for getting at least as efficient, and thus accepted, as
MPI and OpenMP.

Most concepts are presented on a level independent of specific architectures,
although we cannot ignore the dominating presence of commodity systems. Thus,
when we show case studies and actual performance numbers, those have usually been
obtained on x86-based clusters with standard interconnects. Almost all code exam-
ples are in Fortran; we switch to C or C++ only if the peculiarities of those languages
are relevant in a certain setting. Some of the codes used for producing benchmark
results are available for download at the book’s Web site: http://www.hpc.rrze.uni-
erlangen.de/HPC4SE/.

This book is organized as follows: In Chapter 1 we introduce the architecture of
modern cache-based microprocessors and discuss their inherent performance limi-



Xviii

tations. Recent developments like multicore chips and simultaneous multithreading
(SMT) receive due attention. Vector processors are briefly touched, although they
have all but vanished from the HPC market. Chapters 2 and 3 describe general opti-
mization strategies for serial code on cache-based architectures. Simple models are
used to convey the concept of “best possible” performance of loop kernels, and we
show how to raise those limits by code transformations. Actually, we believe that
performance modeling of applications on all levels of a system’s architecture is of
utmost importance, and we regard it as an indispensable guiding principle in HPC.

In Chapter 4 we turn to parallel computer architectures of the shared-memory and
the distributed-memory type, and also cover the most relevant network topologies.
Chapter 5 then covers parallel computing on a theoretical level: Starting with some
important parallel programming patterns, we turn to performance models that ex-
plain the limitations on parallel scalability. The questions why and when it can make
sense to build massively parallel systems with “slow” processors are answered along
the way. Chapter 6 gives a brief introduction to OpenMP, which is still the dominat-
ing parallelization paradigm on shared-memory systems for scientific applications.
Chapter 7 deals with some typical performance problems connected with OpenMP
and shows how to avoid or ameliorate them. Since cache-coherent nonuniform mem-
ory access (ccNUMA) systems have proliferated the commodity HPC market (a fact
that is still widely ignored even by some HPC “professionals”), we dedicate Chap-
ter 8 to ccNUMA-specific optimization techniques. Chapters 9 and 10 are concerned
with distributed-memory parallel programming with the Message Passing Interface
(MPI), and writing efficient MPI code. Finally, Chapter 11 gives an introduction to
hybrid programming with MPI and OpenMP combined. Every chapter closes with
a set of problems, which we highly recommend to all readers. The problems fre-
quently cover “odds and ends” that somehow did not fit somewhere else, or elaborate
on special topics. Solutions are provided in Appendix B.

We certainly recommend reading the book cover to cover, because there is not a
single topic that we consider “less important.” However, readers who are interested
in OpenMP and MPI alone can easily start off with Chapters 6 and 9 for the basic
information, and then dive into the corresponding optimization chapters (7, 8, and
10). The text is heavily cross-referenced, so it should be easy to collect the missing
bits and pieces from other parts of the book.

Acknowledgments

This book originated from a two-chapter contribution to a Springer “Lecture
Notes in Physics” volume, which comprised the proceedings of a 2006 summer
school on computational many-particle physics [A79]. We thank the organizers of
this workshop, notably Holger Fehske, Ralf Schneider, and Alexander Weisse, for
making us put down our HPC experience for the first time in coherent form. Al-
though we extended the material considerably, we would most probably never have
written a book without this initial seed.



Xix

Over a decade of working with users, students, algorithms, codes, and tools went
into these pages. Many people have thus contributed, directly or indirectly, and some-
times unknowingly. In particular we have to thank the staff of HPC Services at Er-
langen Regional Computing Center (RRZE), especially Thomas Zeiser, Jan Treibig,
Michael Meier, Markus Wittmann, Johannes Habich, Gerald Schubert, and Holger
Stengel, for countless lively discussions leading to invaluable insights. Over the last
decade the group has continuously received financial support by the “Competence
Network for Scientific High Performance Computing in Bavaria” (KONWIHR) and
the Friedrich-Alexander University of Erlangen-Nuremberg. Both bodies shared our
vision of HPC as an indispensable tool for many scientists and engineers.

We are also indebted to Uwe Kiister (HLRS Stuttgart), Matthias Miiller (ZIH
Dresden), Reinhold Bader, and Matthias Brehm (both LRZ Miinchen), for a highly
efficient cooperation between our centers, which enabled many activities and col-
laborations. Special thanks goes to Darren Kerbyson (PNNL) for his encouragement
and many astute comments on our work. Last, but not least, we want to thank Rolf
Rabenseifner (HLRS) and Gabriele Jost (TACC) for their collaboration on the topic
of hybrid programming. Our Chapter 11 was inspired by this work.

Several companies, through their first-class technical support and willingness
to cooperate even on a nonprofit basis, deserve our gratitude: Intel (represented by
Andrey Semin and Herbert Cornelius), SGI (Reiner Vogelsang and Riidiger Wolff),
NEC (Thomas Schonemeyer), Sun Microsystems (Rick Hetherington, Ram Kunda,
and Constantin Gonzalez), IBM (Klaus Gottschalk), and Cray (Wilfried Oed).

We would furthermore like to acknowledge the competent support of the CRC
staff in the production of the book and the promotional material, notably by Ari
Silver, Karen Simon, Katy Smith, and Kevin Craig. Finally, this book would not
have been possible without the encouragement we received from Horst Simon
(LBNL/NERSC) and Randi Cohen (Taylor & Francis), who convinced us to embark
on the project in the first place.

Georg Hager & Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen-Nuremberg
Germany



About the authors

Georg Hager is a theoretical physicist and holds a PhD in
computational physics from the University of Greifswald. He
has been working with high performance systems since 1995,
and is now a senior research scientist in the HPC group at Er-
langen Regional Computing Center (RRZE). Recent research
includes architecture-specific optimization for current micro-
processors, performance modeling on processor and system
levels, and the efficient use of hybrid parallel systems. His
daily work encompasses all aspects of user support in high per-
formance computing such as lectures, tutorials, training, code
parallelization, profiling and optimization, and the assessment
of novel computer architectures and tools.

Gerhard Wellein holds a PhD in solid state physics from the
University of Bayreuth and is a professor at the Department for
Computer Science at the University of Erlangen. He leads the
HPC group at Erlangen Regional Computing Center (RRZE)
and has more than ten years of experience in teaching HPC
techniques to students and scientists from computational sci-
ence and engineering programs. His research interests include
solving large sparse eigenvalue problems, novel parallelization
approaches, performance modeling, and architecture-specific
optimization.

XXI1



List of acronyms and abbreviations

ASCII American standard code for information interchange
ASIC Application-specific integrated circuit
BIOS Basic input/output system

BLAS Basic linear algebra subroutines

CAF Co-array Fortran

ccNUMA Cache-coherent nonuniform memory access
CFD Computational fluid dynamics

CISC Complex instruction set computer

CL Cache line

CPI Cycles per instruction

CPU Central processing unit

CRS Compressed row storage

DDR Double data rate

DMA Direct memory access

DP Double precision

DRAM Dynamic random access memory

ED Exact diagonalization

EPIC Explicitly parallel instruction computing
Flop Floating-point operation

FMA Fused multiply-add

FP Floating point

FPGA Field-programmable gate array

ES File system

FSB Frontside bus

GCC GNU compiler collection

GE Gigabit Ethernet

GigE Gigabit Ethernet

GNU GNU is not UNIX

GPU Graphics processing unit

GUI Graphical user interface

XXI1il



XX1V

HPC High performance computing
HPF High performance Fortran

HT HyperTransport

IB InfiniBand

ILP Instruction-level parallelism

IMB Intel MPI benchmarks

I/0 Input/output

P Internet protocol

JDS Jagged diagonals storage

L1D Level 1 data cache

L11 Level 1 instruction cache

L2 Level 2 cache

L3 Level 3 cache

LD Locality domain

LD Load

LIKWID Like I knew what I'm doing

LRU Least recently used

LUP Lattice site update

MC Monte Carlo

MESI Modified/Exclusive/Shared/Invalid
Ml Memory interface

MIMD Multiple instruction multiple data
MIPS Million instructions per second
MMM Matrix—matrix multiplication
MPI Message passing interface
MPMD Multiple program multiple data
MPP Massively parallel processing
MVM Matrix—vector multiplication
NORMA No remote memory access

NRU Not recently used

NUMA Nonuniform memory access
OLC Outer-level cache

(0N Operating system

PAPI Performance application programming interface
PC Personal computer

PCI Peripheral component interconnect
PDE Partial differential equation

PGAS Partitioned global address space



PLPA
POSIX
PPP
PVM
QDR
QPI
RAM
RISC
RHS
RFO
SDR
SIMD
SISD
SMP
SMT
SP
SPMD
SSE
ST
STL
SYSV
TBB
TCP
TLB
UMA
UPC

Portable Linux processor affinity
Portable operating system interface for Unix
Pipeline parallel processing
Parallel virtual machine

Quad data rate

QuickPath interconnect

Random access memory
Reduced instruction set computer
Right hand side

Read for ownership

Single data rate

Single instruction multiple data
Single instruction single data
Symmetric multiprocessing
Simultaneous multithreading
Single precision

Single program multiple data
Streaming SIMD extensions
Store

Standard template library

Unix System V

Threading building blocks
Transmission control protocol
Translation lookaside buffer
Uniform memory access

Unified parallel C

XXV



