Second Edition

Software Engineering
I\/IQdem Approaches

Eric J. Braoude e Michael E. Bernstein

Software
Engineering

Modern Approaches
SECOND EDITION

Eric J. Braude

Boston University, Metropolitan College

Michael E. Bernstein

Boston University, Metropolitan College

W

WILEY
JOHN WILEY & SONS, INC.

Executive Editor Beth Lang Golub

Editor Jonathan Shipley

Assistant Editor Georgia King

Editorial Assistant Mike Berlin

Marketing Manager Christopher Ruel

Designer RDC Publishing Group Sdn Bhd
Production Manager Janis Soo

Assistant Production Editor Yee Lyn Song

Cover Credit: © Hulton Archive/Getty Images

This book was set in 10/12 Point Weiss by Thomson Digital, and printed and bound by R.R. Donnelley. The cover was printed by R.R.
Donnelley.

This book is printed on acid free paper. co

Copyright © 2011, 2001 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008,
website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next
academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period,
please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/
go/returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Braude, Eric J.
Software engineering : modern approaches / Eric J. Braude, Michael E. Bernstein. — 2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-471-69208-9 (cloth)
1. Software engineering. 2. Object-oriented programming (Computer science) I. Bernstein, Michael E. II. Title.
QA76.758.874 2011
005.1—dc22
2009051247

Printed in the United States of America

10987654321

For Judy (Eric J. Braude)
To Bambi, Garrett and Reid,
Jor all their love and support (Michael E. Bernstein)

Preface

Much of the modern world runs on software. As a result, software engineers are entrusted with significant
responsibility. Although it is a biomedical engineer, for example, who designs health monitoring systems, it is
a software engineer who creates its actual control functions. A marketing professional develops ways to reach
customers online but it is a software engineer who makes the system a reality.

Today's software engineer must be able to participate in more than one kind of software process, work in
agile teams, deal with customers, express requirements clearly, create modular designs, utilize legacy and
open source projects, monitor quality, incorporate security, and apply many types of tests.

THE ISSUE OF SCALE

A software application consists of tens, hundreds, even thousands of classes. This is very different from
managing three or four of them, and results in the dragon of complexity suggested by this book’s cover. As
also suggested there, however, this dragon can be subdued. Indeed, to deal with numerous and complex
classes, software engineers have at their disposal a wide variety of tools and techniques. These range from the
waterfall process to agile methodologies, from highly integrated tool suites to refactoring and loosely coupled
tool sets. Underlying this variety is continuing research into reliable approaches, and an acknowledgment of
the fact that one size does not fit all projects.

THIS EDITION COMPARED WITH THE FIRST

The first edition of this book emphasized the object-oriented approach, which has subsequently
become widespread. It was also designed to help student teams carry out hands-on term projects through
theory, examples, case studies, and practical steps. Object-orientation and hands-on continue to be major features
of this edition. However, we have widened the scope of the first edition, especially by including extensive
coverage of agile methods and refactoring, together with deeper coverage of quality and software design.
Readers of the first edition made extensive use of the complete video game case study—an example that
they could follow “from soup to nuts” but which was significantly more comprehensive than a toy. This edition
retains and updates that case study, but it adds the exploration of a simpler example on one hand (a DVD rental
store) and large, real, open source case studies on the other. In particular, to provide students a feeling for the
scope and complexity of real-world applications, this book leads them through selected requirements, design,
implementation, and maintenance of the Eclipse and OpenOffice open source projects. The size, complexity,
and transparency of these projects provide students a window into software engineering on a realistic scale.
Every book on software engineering faces a dilemma: how to reconcile the organization of the topics
with the organization of actual software project phases. An organization of chapters into process/project
management/requirements analysis/design/implementation/test/maintenance is straightforward but is liable
to be misinterpreted as promoting the waterfall development process at the expense others. Our approach has
been to use this organization in the seven parts of the book but to demonstrate throughout that each phase

PREFACE

typically belongs to a cycle rather than to a single waterfall sequence. In particular, our approach integrates
agile methodologies consistently.

This edition also introduces somewhat advanced influential ideas, including model-driven archi-
tectures and aspect-oriented programming. Nowadays, formal methods are mandated by government
agencies for the highest levels of security, and this book aims to educate readers in their possibilities. Due
to print space limitations, some of this material is to be found in the online extension of this book.

In summary, specific features of this edition compared with the first are as follows:

» A sharpening and standardization of the material from the first edition
» A strong agile thread throughout, including a chapter on agility alone and one devoted to refactoring.
A separate chapter on quality in six of the book's seven parts
* Real-world case studies, taken from the Eclipse and OpenOffice open source projects
» Creatly expanded coverage of software design and design patterns
¢ New chapters on advanced, influential software engineering ideas
» An organization of many of the book’s seven parts as follows:
* Principles
¢ Details
e Quality
* Advanced Methods

HOW INSTRUCTORS CAN USE THIS BOOK

This book has been designed to accommodate multiple approaches to the learning and teaching of software
engineering. Most instructors teach the fundamentals of software process, project management, requirements
analysis, design, testing, implementation, and maintenance. Beyond this common ground, however,
instructors employ a wide variety of styles and emphases. The following are major approaches, together
with the sequence of chapters that support each of them.

A. Process emphasis, concentrating on how applications are developed
All of Parts I through IV; and Chapters 15, 22, and 25 (the remaining principles and introduction
chapters)

B. Design emphasis, which teaches software engineering primarily as a design activity

Principles and introduction: Chapters 1, 3, 7, and 10; all of Part V; and Chapters 22 and 25 (principles
and introduction)

C. Programming and agile emphasis, which emphasizes software engineering as a code-oriented activity that
satisfies requirements, emphasizing agile approaches
Principles and introduction: Chapters 1, 3, 7, 10, and 15; all of Part VI; and Chapters 25 and 26

D. Two-semester course, which enables the instructor to cover most topics and assign a substantial hands-on
project

XVi

PREFACE

D1. All of the chapters in the book, either in sequence from beginning to end
or

Da2. In two passes as follows:

(i) Principles and introduction chapters in the first semester: Chapters 1, 3, 7, 15, 22, and 25
(ii) The remaining chapters in the second semester

Empbasis on a bands-on projects and case studies, which relies mostly on an active team or individual project as
the vehicle for learning theory and principles

Principles and introduction chapters: Chapters 1, 3, 7, 15, 22, 25, and 26, and all case study sections in
the remaining chapters

Theory and principles emphasis, concentrating on what one can learn about software engineering and its
underpinnings

Principles and introduction chapters: Chapters 1, 2, 3, 7, 15, 22, and 25, followed, as time allows, by
Chapters 14 and 21 (emerging topics)

Quality assurance and testing emphasis

Principles and introduction: Chapters 1, 3, 7, and 10; Chapters 2, 5, 9, 13, 20, 23 (quality); and Chapters
25, 26, 27, and 28 (testing).

The web site for this book, including review questions and the Encounter game case study, is

www.wiley.com/college/braude.

Eric Braude
Michael Bernstein
Boston, MA
January 2010

Acknowledgments

We owe a debt of gratitude to our students at Boston University's Metropolitan College. Working in myriad
industries and businesses, they have given us invaluable feedback. The College itself has provided a model place
for the teaching and learning software engineering. Our thanks go to Dick Bostwick and Tom VanCourt, much
of whose work in the first edition carries over to this one. We are grateful to the people of Wiley for working with
us through the painstaking process of writing and publishing this book. We are particularly appreciative of the
help from our editors, Dan Sayre and Jonathan Shipley; from Georgia King, Yee Lyn Song, and the indefatigable
staff. We thank the reviewers of our manuscript, whose feedback has been invaluable:

Arvin Agah, University of Kansas

Steven C. Shaffer, Pennsylvania State University
Stephen M. Thebaut, University of Florida

Aravinda P. Sistla, University of Illinois, Chicago
James P. Purtilo, University of Maryland

Linda M. Ott, Michigan Technological University
Jianwei Niu, University of Texas, San Antonio
William Lively, Texas A&M University

Chung Lee, California State University, Pomona
Sudipto Ghosh, Colorado State University

Max . Fomitchev, Pennsylvania State University
Lawrence Bernstein, Stevens Institute of Technology
John Dalbey, California Polytechnic University

Len Fisk, California State University, Chico

Ahmed M. Salem, California State University, Sacramento
Fred Strauss, New York University

Kai H. Chang, Auburn University

Andre van der Hoek, University of California, Irvine
Saeed Monemi, California Polytechnic University
Robert M. Cubert, University of Florida

Chris Tseng, San Jose State University

Michael James Payne, Purdue University

Carol A. Wellington, Shippensburg University

Yifei Dong, University of Oklahoma

Peter Blanchfield, Nottingham University

Desmond Greer, Queen's University Belfast

WeiQi Yan, Queen’s University Belfast

Zaigham Mahmood, Derby University

Karel Pieterson, Hogeschool Van Amsterdam

This book would not have been possible without the constant love, patience, and encouragement of our families.

Brief Contents

Preface xiv
Acknowledgments xvii

Part | Introduction to Software
Engineering

Part II Software Process

Partlll Project Management

PartIV Requirement Analysis

PartV Software Design

Part VI Implementation

Part VII Testing and

Maintenance

Glossary 759
Index 767

The Goals and Terminology of Software Engineering
Introduction to Quality and Metrics in Software
Engineering 21

Software Process 32

Agile Software Processes 63

Quality in the Software Process 80
Software Configuration Management 120

Principles of Software Project Management [140
Principles of Software Project Management Il 168
Quality and Metrics in Project Management 213

Principles of Requirements Analysis 230

Analyzing High-Level Requirements 245

Analyzing Detailed Requirements 278

Quality and Metrics in Requirements Analysis 331
Formal and Emerging Methods in Requirements Analysis
(Online chapter) 349

15
16
17
18
19
20
21

Principles of Software Design 350

The Unified Modeling Language 361

Software Design Patterns 383

Software Architecture 438

Detailed Design 476

Design Quality and Metrics 508

Advanced and Emerging Methods in Software Design
(Online chapter) 538

22
23
24

Principles of Implementation 539
Quality and Metrics in Implementation 584
Refactoring 601

25
26
27
28
29

Introduction to Software Testing 621
Unit Testing 630

Module and Integration Testing 666
Testing at the System Level 694
Software Maintenance 730

Ccontents

Preface Xiv
The Issue of Scale Xiv
This Edition Compared with the First Xiv
How Instructors Can Use This Book XV
Acknowledgments Xvii

PART | Introduction to Software Engineering

1 The Goals and Terminology of Software Engineering 1
1.1 What is Software Engineering 2
1.2 Why Software Engineering Is Critical: Software Disasters 3
1.3 Why Software Fails or Succeeds 4
1.4 Software Engineering Activities 5
1.5 Software Engineering Principles 10
1.6 Ethics in Software Engineering 12
1.7 Case Studies 14
1.8 Summary 19
1.9 EXErCiSes 19

Bibliography 20

2 Introduction to Quality and Metrics in Software Engineering 21
2.1 The Meaning of Software Quality 22
2.2 Defects in Software 23
2.3 Verification and Validation 25
2.4 Planning for Quality 27
2.5 0 Metrics . . . 28
2.6 SUMMATY 30
0 Iy A = (= (o L= N 31

Bibliography 31
PART Il Software Process

3 Software Process 32
3.1 The Activities of Software Process 33
3.2 Software Process Models 37
3.3 (ase Study: Student Team Guidance 55

vi CONTENTS

3.4 SUMMATY o oot e e 59
3.5 EXETCISES . . . v s s wowmmmon we wmn s s 55 b s a e am R E B R G R EE T E R e e E 60
Bibliography 62

4 Agile Software Processes 63
4.1 Agile History and Agile Manifesto 64
42 Agile Principles 65
43 Agile Methods . ..o imm csovisisastitinmasmonamadsss s 348635 mamansss 66
4.4 Agile Processes 68
4.5 Integrating Agile with Non-Agile Processes 74
4.6 SUMMATY oo 77
4.7 EXercises 78
Bibliography 79

5 Quality in the Software Process 80
5.1 Principles of Managing Quality 81
5.2 Managing Quality in Agile Processes 82
5.3 Quality Planning 83
5.4 Inspections 87
55 QA Reviews and Audits 92
5.6 Defect Management e 93
5.7 Process Improvement and Process Metrics 96
5.8 Organization-Level Quality and the CMMI 100
5.9 Case Study: Software Quality Assurance Plan for Encounter 103
510 SUMMATY . . . 118
511 EXercises 118
Bibliography 119

6 Software Configuration Management 120
6.1 Software Configuration Management Goals 121
6.2 SCM Activities 121
6.3 Configuration Management Plans 128
6.4 Configuration Management Systems 128
6.5 Case Study: Encounter Video Game 129
6.6 CaseStudy: Eclipse ittt et e 134
6.7 Student Team Guidance: Configuration Management 136
6.8 SUMMATY 137
6.9 Exercises 138
Bibliography 139

PART Il Project Management

7 Principles of Software Project Management I: Organization, Tools, and Risk Management .. 140
7.1 Software Project Organization 142
7.2 Team Size 144
7.3 Geographically Distributed Development 146
7.4 The Team Software Process 151
7.5 Software Project Tools and Techniques 153

CONTENTS
7.6 Risk Management 159
7.7 Student Team Guidance: Organizing the Software Project's Management 162
7.8 SUMMATY . . . oot 165
7.9 EXEICISES . . . o 166
Bibliography . . . v v s 553 i s i n s EE B E S s S E S e 5 E RN RS s 167
8 Principles of Software Project Management II: Estimation, Scheduling, and Planning 168
8.1 Cost Estimation 169
8.2 Scheduling 182
8.3 The Software Project Management Plan 185
8.4 Case Study: Encounter Project Management Plan 187
8.5 Case Study: Project Management in Eclipse 196
8.6 Case Study: Project Management for OpenOffice 205
8.7 Case Study: Student Team Guidance 208
8.8 Summary 210
8.9 EXErcises 211
Bibliography 212
9 Quality and Metrics in Project Management 213
9.1 Cultivating and Planning Internal Quality 214
9.2 Project Metrics 215
9.3 Using Metrics for Improvement 219
9.4 Software Verification and Validation Plan 223
9.5 Case Study: Software Verification and Validation Plan for Encounter 225
9.6 SUMMATY 228
9.7 Exercises 228
Bibliography 229

PART IV Requirement Analysis
10 Principles of Requirements Analysis 230
10.1 The Value of Requirements Analysis 231
10.2 Sources of Requirements 231
10.3 Higb-level vs. Detailed Requirements 232
10.4 Types of Requirements 233
10.5 Nonfunctional Requirements 233
10.6 Documenting Requirements 238
107 "Traceability: o o wwse s s 58 65 i 56 mansmEEns s i 555545 bnd@oiihiissianzi 239
10.8 Agile Methods and Requirements 239
10.9 Updating the Project to Reflect Requirements Analysis 241
10.10 Summary 243
10.11 EXercises 244
Bibliography 244
11 Analyzing High-Level Requirements 245
11.1 Examples of Customer Wants 246
11.2 Stakeholder Vision 247
11.3 The Interview and Documentation Process 248

vii

viii

CONTENTS
11.4 Writing an Overview e 249
11.5 Describing Main Functions and Use Cases 249
11.6 Agile Methods for High-Level Requirements 252
11.7 Specifying User Interfaces: High Level 254
11.8 Security Requirements 258
11.9 Using Diagrams for High-Level Requirement 260
11.10 Case Study: High-Level Software Requirements Specification
(SRS) for the Encounter Video Game 264
11.11 Case Study: High-Level Requirements for Eclipse 268
11.12 Eclipse Platform Subproject (First of three) 269
11.13 Case Study: High-Level Requirements for OpenOffice 273
1114 SUMMaArY e 275
1115 EXEICISes o 275
Bibliography 276
12 Analyzing Detailed Requirements 278
12.1 The Meaning of Detailed Requirements 279
12.2 Organizing Detailed Requirements 280
12.3 User Interfaces: Detailed Requirements 291
12.4 Detailed Security Requirements 296
12.5 Error Conditions 296
12.6 Traceability of Detailed Requirements 297
12.7 Using Detailed Requirements to Manage Projects 300
12.8 Prioritizing Requirements 301
12.9 Associating Requirements with Tests 302
12.10 Agile Methods for Detailed Requirements 303
12.11 Using Tools and the Web for Requirements Analysis 305
12.12 The Effects on Projects of the Detailed Requirements Process 308
12.13 Student Project Guide: Requirements for the Encounter Case Study 309
12.14 Case Study: Detailed Requirements for the Encounter Video Game 315
12,15 Summary 328
12.16 EXErcises 329
Bibliography 330
13 Quality and Metrics in Requirements Analysis 331
13.1 Quality of Requirements for Agile Projects 332
13.2 Accessibility of Requirements 332
13.3 Comprehensiveness of Requirements 333
13.4 Understandability of Requirements 335
13.5 Unambiguity of Requirements 335
13.6 Consistency of Requirements 336
13.7 Prioritization of Requirements 337
13.8 Security and High-Level Requirements 338
13.9 Self-Completeness of Requirements 339
13.10 Testability of Requirements, 340
13.11 Traceability of Requirements 342

13.12

Metrics for Requirements Analysis 343

CONTENTS
13.13 Inspecting Detailed Requirements 344
13.14 SUMMArY e 347
13.15 EXEICISES o o ot e e 348
14 Formal and Emerging Methods in Requirements Analysis: An Introduction
(Online Chapter)t e 349
14.1 Provable Requirements Method
14.2 Introduction to Formal Methods
14.3 Mathematical Preliminaries
14.4 The Z-Specification Language
14.5 The B Language System
14.6 Trade-offs for Using a B-like system
14.7 Summary
14.8 Exercises
Bibliography
PART V Software Design
15 Principles of Software Design 350
15.1 The Goals of Software Design 351
152 Integrating Design Models 354
15.3 Frameworks 357
15.4 1EEE Standards for Expressing Designs 359
15,5 Summary 359
15.6 EXErCises 360
16 The Unified Modeling Language 361
16.1 Classes in UML 362
16.2 Class Relationships in UML 362
16.3 Multiplicity e 364
16.4 Inheritance 364
16.5 Sequence Diagrams 368
16.6 State Diagrams 372
16.7 Activity Diagrams 374
16.8 Data Flow Models 376
16.9 A Design Example with UML 377
16.10 SUMMATYo 380
16.11 EXErcises e 381
Bibliography 382
17 Software Design Patterns 383
17.1 Examples of a Recurring Design Purpose 384
17.2 An Introduction to Design Patterns 386
17.3 Summary of Design Patterns by Type: Creational,
Structural, and Behavioral 390
17.4 Characteristics of Design Patterns: Viewpoints, Roles, and Levels 396
17.5 Selected Creational Design Patterns 400
17.6 Selected Structural Design Patterns 408

X CONTENTS

17.7 Selected Behavioral Design Patterns 417
17.8 Design Pattern Forms: Delegation and Recursion 431
179 SUNMMALY ot s giss i 5555 nmfoME@ems 5 5s: 5888 NpenEEEeEqissssss 435
17.10 EXercises 436
Bibliography 437

18 Software Architecture 438
18.1 A Categorization of Architectures 439
18.2 Software Architecture Alternatives and Their Class Models 439
18.3 Trading Off Architecture Alternatives 453
18.4 Tools for Architectures 454
18.5 IEEE Standards for Expressing Designs 455
18.6 Effects of Architecture Selection on the Project Plan 455
18.7 Case Study: Preparing to Design Encounter (Student Project Guide continued) 457
18.8 Case Study: Software Design Document for the Role-Playing Video Game Framework 460
18.9 Case Study: Software Design Document for Encounter (Uses the Framework) 462
18.10 Case Study: Architecture of Eclipse 466
18.11 Case Study: OpenOffice Architecture 468
18.12 Summary 473
18.13 Exercises 474
Bibliography 475

19 Detailed Design 476
19.1 Relating Use Cases, Architecture, and Detailed Design 477
19.2 A Typical Road Map for the "Detailed Design” Process 478
19.3 Object-Oriented Design Principles 479
19.4 Designing against Interfaces 481
19.5 Specifying Classes, Functions, and Algorithms 482
19.6 Reusing Components 485
19.7 Sequence and Data Flow Diagrams for Detailed Design 486
19.8 Detailed Design and Agile Processes 490
19.9 Design in the Unified Development Process 490
19.10 IEEE Standard 890 for Detailed Design 491
19.11 Updating a Project with Detailed Design 491
19.12 Case Study: Detailed Design of Encounter 494
19.13 Case Study: Detailed Design of Eclipse 503
19.14 Summary 505
19.15 Exercises 505
Bibliography 507

20 Design Quality and Metrics 508
20.1 Degree of Understandability, Cohesion, and Coupling 510
20.2 Degree of Sufficiency as a Quality Goal 510
20.3 Degree of Robustness as a Quality Goal 511

20.4 Degree of Flexibility as a Design Quality Goal 512
20.5 Degree of Reusability as a Design Quality Goal
20.6 Degree of Time Efficiency as a Design Quality Measure

CONTENTS
20.7 Degree of Space Efficiency as a Design Quality Measure 519
20.8 Degree of Reliability as a Design Quality Measure 521
20.9 Degree of Security as a Design Quality Measure 523
20.10 Assessing Quality in Architecture Selection 525
20.11 Assessing the Quality of Detailed Designs 531
20.12 SUMMATY oo e 536
2013 EXEICiSes . ; « : s 55 55 cssmmmummasisritonsiiisnissmusymens s s ssesssssi 536
Bibliography 537
21 Advanced and Emerging Methods in Software Design (Online Chapter) 538
21.1 Designing in a Distributed Environment
21.2 Introduction to Aspect-Oriented Programming
21.3 Designing for Security with UMLsec
21.4 Model-Driven Architectures
21.5 The Formal Design Process in B
21.6 Summary
21.7 Exercises
Bibliography
PART VI Implementation
22 Principles of Implementation 539
22.1 Agile and Non-Agile Approaches to Implementation 540
22.2 Choosing a Programming Language 540
22.3 Identifying Classes 540
22.4 Defining Methods 541
22.5 Implementation Practices 544
22.6 Defensive Programming 548
22.7 Coding Standards 552
22.8 COMMENTS oottt 554
22.9 Tools and Environments for Programming 555
22.10 Case Study: Encounter Implementation 556
22.11 Case Study: Eclipse 559
22.12 Case Study: OpenOffice 559
22.13 Student Team Guidance for Implementation 565
2214 SUMMATY 566
22.15 Code Listings Referred to in this Chapter 566
20.16 EXEICISES : : ¢ s s s oomumuuned 665 6575868545 bambmidnisatsines isiasemmmne 581
Bibliography 583
23 Quality and Metrics in Implementation 584
23.1 Quality of Implementation 585
23.2 Code Inspections and Related Quality Procedures 597
23.3 SUMMATY . ..ot 599

23.4 Exercises

Xi

Xii CONTENTS

24 Refactoring 601
24.1 Big Refactorings e 604
242 Composing Methods 606
24.3 Moving Features between Objects 608
24.4 Organizing Data 609
245 Generalization 612
24.6 Introducing Modules 616
24.7 Refactoring in Projects L 617
24.8 SUMMATY 619
249 EXEICISES 619

Bibliography 620

PART VII Testing and Maintenance

25 Introduction to Software Testing 621
25.1 Testing Early and Often; and the Agile Connection 622
252 Retesting: Regression Testing 622
25.3 Black Box and White Box Testing 623
25.4 Unit Testing vs. Post-Unit Testing 624
25.5 Testing Object-Oriented Implementations 625
25.6 Documenting Tests 626
25.7 Test Planningo 626
25.8 Testing Test Suites by Fault Injection 628
259 SUMMATY o 628
25.10 Exercises 629

26 Unit Testing o .« sovss vposomsss vmp s vmmss sme s s s so 9Edis fnss siisissmn 630
26.1 The Sources of Units for Unit Testing 631
26.2 Unit Test Methods 631
26.3 Testing Methods 642
26.4 Test-Driven Development 647
26.5 Case Study: Encounter Video Game 652
26.6 SUMMATY 662
267 EXEICISES 5 o 5 5 55 ¢ 55 8 255 4 5 8 S vis w5 55 5 5 0 5 & 5 nm s b a momoe mmm i s s s e n 663

Bibliography 665

27 Module and Integration Testing 666
27.1 Stubs and Drivers 667
272 Testing a Class 668
27.3 Integration 672
27.4 Daily Builds 679
27.5 Interface Testing 680
27.6 Module Integration 682
27.7 Case Study: Class Test for Encounter 683
27.8 Case Study: Encounter Integration Plan 688
27.9 SUMMATY . . .o 692
27.10 EXercises 692

