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Preface

Methodology for combining findings from repeated research studies has a long
history. Early examples of combining evidence are found in replicated astronom-
ical and physical measurements. Agricultural experiments particularly lend
themselves to replication and led to the development of statistical techniques for
merging results.

In recent years a plethora of meta-analyses have emerged in social science
research. The need to arrive at policy decisions affecting social institutions
fostered the momentum toward summarizing research. But, as with most
methodologies, abuse frequently accompanies use. Two central aspects of meta-
analysis were quickly recognized. One involved methods for collecting the body
of information to be summarized. This pinpointed a variety of problems, pitfalls,
and questions. For example, what steps should be taken to guarantee objectivity?
Should some studies be omitted because of inadequacies in design or execution?

The second aspect of meta-analysis assumes as a starting point that we have
available a set of reasonably well-designed studies that address the same question
using similar outcome measures and focuses on the methodology needed for
summarizing the data. Because classical statistics primarily addresses the analy-
sis of single experiments, new formulations, models, and methods are required.

The main purpose of this book is to address the statistical issues for integrating
independent studies. There exist a number of papers and books that discuss the
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Xvi Preface

mechanics of collecting, coding, and preparing data for a meta-analysis, and we
do not deal with these.

It is not unusual in the early development of a field for terms to be used that
later may be less than adequate or more restrictive than need be. In particular, the
term effect size has been used to refer to standardized mean differences. In the
beginning this usage was very natural in that the particular studies of interest did
indeed involve differences between means. However, with more elaborate ex-
perimentation and more diverse applications, differences between treatments
may depend not only on means but also on variances, medians, correlations,
order statistics, distances, etc. Thus it would behoove us to now use the term
effect size to refer to any such indices. But because this would be contrary to
much of the existing literature, we do not, somewhat regrettably, do so. Instead
we introduce the term effect magnitude to refer to measures in general.

The problem is further compounded. For large samples, quantities such as
variances, medians, correlations, etc., will frequently have a normal distribution
in which some of the population parameters will indeed be means. Consequently,
althongh we may begin with statistics that are not means, we often end up with
statistics that are effect sizes in the original sense.

Because this book concerns methodology, the content necessarily is statistical,
and at times mathematical. In order to make the material accessible to a wider
audience, we have not provided proofs in the text. Where proofs are given, they
are placed as commentary at the end of a chapter. These can be omitted at the
discretion of the reader.

We make a number of technical statements such as ‘“The statistic Q has a
chi-square distribution with degrees of freedom,”” or ““The statistics 0; and O,
are independent.”” Each of these statements warrants a proof or a reference.
However, for the sake of simplicity, readability, and accessibility to the mate-
rials, we have taken the liberty of omitting many proofs and references. How-
ever, as a compromise, we include a few proofs and references for statements
that might be considered typical.

At times, mathematical expressions are needed. When possible we provide
tables and graphs to make these expressions simple to use.

In our writing we have in mind a prototypical reader who is familiar with basic
statistics at an applied level. This normally means the completion of a one-year
sequence in statistics at a noncalculus level, and includes the ideas of statistical
inference, regression and correlation, and analysis of variance. Concepts such as
distribution (cumulative distribution function), expected value, bias, variance,
and mean-squared error are generally defined in standard introductory statistics
textbooks and are not defined in this book.

Occasionally, we use more advanced statistical concepts, such as consistency,
efficiency, invariance, or asymptotic distributions. Because these concepts are
used infrequently, we do not give formal definitions and on occasion give only a
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brief explanation or no explanation at all. Elementary expositions of these con-
cepis can be found in more advanced statistics books. Our main reason for not
discussing these concepts is that they are not essential for an understanding of the
principles. A lengthy explanation would destroy readability. On the other hand,
these comments can be useful for those readers familiar with the concepts.

Throughout the book we describe computational procedures whenever re-
quired. Many computations can be completed on a hand calculator, whereas
some require the use of a standard statistical package such as SAS, SPSS, or
BMD. Readers with experience using a statistical package or who conduct analy-
ses such as multiple regression or analysis of variance should be able to carry out
the analyses described with the aid of a statistical package.

Because of the inclusion of so many tables, a commentary on interpolation
may be in order. For any two-way table (see figure), the simplest method of
interpolation is linear in each direction; and in general, linear interpolation will
suffice for most practical purposes. For more accurate interpolation, the values
can be plotted horizontally or vertically. Thus, for example, vertical plots give
interpolated values between ¢, and d, and between ¢, and d,, denoted by crosses.
Similarly, horizontal plots given interpolated values between ¢, and c, and
between d, and d,, denoted by dots. Subsequent linear interpolation in the other
direction will provide a more accurate result than two-way linear interpolation.
Of course, plotting a complete row or column of interpolated values gives still
more accurate results, but this may be more effort than is warranted in practice.

A comment is in order concerning the calculations presented in the examples.
Individual terms are presented after rounding, whereas totals are computed with-
out roundoff. Consequently, discrepancies in the last decimal may exist in some
of the computations.

There is an inherent difficulty in trying to use a single letter to denote a
particular characteristic. For example, if we denote a population mean by g, then
how shall we denote the mean of the means of an experiment and control group?
If we label the two means as u® and 4 and u = Y (4B + 4©), then we have
denoted by 4 two different types of means. Such inconsistencies are inherent in
the subject and occur throughout the book, so it is important to make quite
explicit the underlying context and thereby remove potential confusion. Because
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We write a=b to mean that @ and b are ‘‘approximately’’ equal. We use the
symbol a = b to signify a definition.

Independent multiple opinions and replications of experiments are but two
examples of corroborative evidence which are currently in vogue, and which we
believe will increase in frequency during the next decade. We hope that the
present development of methodology will provide some guidelines for the rigor-
ous interpretation of data from independent sources.
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