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Preface

Electromagnetic theory is beautiful! When looked at from the relativistic
point of view where electric and magnetic fields are really different aspects
of the same physical quantity, it exhibits an aesthetically pleasing structure
which has served as a model for much of modern theoretical physics. Un-
fortunately this beauty has been all but buried as most textbooks have
treated electricity, magnetism, Coulomb’s law, and Faraday’s law as almost
completely independent subjects with the ground work always supplied by
means of empirical or historical example. Occasionally a chapter is devoted
to the relativistic coalescence of the various aspects of electromagnetism
but use is rarely made of the requirement of Lorentz invariance in deriving
the fundamental laws.
Our point of view here is quite different. Basically we have two purposes
in mind—one is to exhibit the essential unity of electromagnetism in its
vii



viii PREFACE

natural, relativistic framework and the other is to show how powerful the
constraint of relativistic invariance is. To these ends we shall show that all
electromagnetism follows from electrostatics and the requirement that our
laws be the simplest ones allowable under the relativistic constraint. The
hope is that the student will make use of these new insights in thinking about
theories that are as yet undeveloped and that the model we set here will be
generally useful in other areas of physics.

A word about units. Unfortunately one of the results of the completely
disconnected way in which electricity and magnetism have been taught in
the past has been the growing acceptance of the mks over the cgs system of
units. We have no special preference for centimeters over meters or of
grams over kilograms. We do, however, require a system wherein the
electric field E and the magnetic field B are in the same units. Using the mks
system, as it is presently constituted, for electromagnetic theory is akin to
using a meterstick to measure along an East-West line and a yardstick to
measure along a North-South line. To measure E and B in different units
is completely antithetical to the entire notion of relativistic invariance.
Accordingly we will make use of the cgs (gaussian) system of units ex-
clusively. Conversion to practical units where necessary can be carried
out with no difficulty.

The author would like to express his most profound appreciation
to Miss Margaret Hazzard for her patient and careful typing of the text.

MELVIN SCHWARTZ



Contents

Preface

1 MATHEMATICAL REVIEW AND SURVEY OF SOME NEW
MATHEMATICAL IDEAS

11

1-2

2-1

Vectors in Three Dimensions; A Review of

Elementary Notions

The Transformation Properties of Vectors under

Spatial Rotation

Differentiation of Vectors with Respect to Time and Position;
The “Del’”” Operator (V) as a Vector

The Notion of Flux; Divergence of a Vector Field ;

Gauss' Theorem

The Curl of a Vector Function of Space; Stokes’ Theorem
Tensors of the Second Rank

Diagonalizing a Second-rank Symmetric Tensor

PRINCIPLES OF ELECTROSTATICS

Introduction; Coulomb’s Law

2-2 The Divergence of E; Gauss' Law

2-3

A Few Words about Materials; Conductors

vii

12

14
18
21
24

28

28
30
33



2-4
2-5

2-6
2-7
2-8
2-9
2-10
2-1
2-12
2-13

2-14

2-15

2-16

The Conservative Nature of Electrostatics; Potential
Some Important Theorems about Potential Functions;
Boundary Conditions and Uniqueness

Electric Dipole Moment; Polarization; Displacement Field
The Energy of a Charge Distribution

The General Theory of Capacitance

Cylindrical and Spherical Coordinates

Solving Laplace’'s Equation in Cartesian Coordinates
Solving Laplace’s Equation in Cylindrical Coordinates
The Solution to Laplace’s Equation in Spherical Coordinates
Solving Boundary-value Problems in Spherical
Coordinates with Azimuthal Symmetry

The Multipole Expansion of an Azimuthally Symmetrical
Charge Distribution

The Interaction Energy of Two Nonoverlapping
Azimuthally Symmetric Charge Distributions;
Determination of Nuclear Shape

The Electrostatic Stress Tensor

3 ELECTROMAGNETISM AND ITS RELATION TO RELATIVITY

3-1
3-2
3-3
3-4
3-5

3-6

Introduction ; The Michelson-Morley Experiment

The Lorentz Transformation

Charge Density and Current Density as Components

of a Four-vector

There Must Be a “Magnetic Field”! (The Requirement of
Lorentz Invariance Implies a Vector Potential)

The Electric and Magnetic Fields as Elements of a
Second-rank Tensor

Maxwell’'s Equations

4  TIME-INDEPENDENT CURRENT DISTRIBUTIONS
MAGNETOSTATICS

4-1
4-2
4-3
4-4
4-5
4-6
4-7

An Elementary Derivation of Ohm's Law

Finding the Magnetic Field through the Vector Potential
The Biot-Savart Law

Ampere's Law

B as the Gradient of a Potential Function

Magnetization (M) and the H Field

The Energy of a Static Current Distribution ; Force and
Torque on a Magnetic Dipole

CONTENTS

36

42
45
51
54
62
69
73
78

83

90

94
97

106
105
110
121
123

126
131

139

140
141
145
147
149
163

162



CONTENTS

4-8

4.9

4-10

4-11
412

5 THE VARIATION OF THE ELECTROMAGNETIC FIELD WITH TIME:

The Motion of a Charged Particle in a Constant
Magnetic Field

The Motion of a Charged Particle in Crossed Electric
and Magnetic Fields

Larmor Precession in a Magnetic Field

A Method of Measuring g — 2

The Magnetic Stress Tensor

FARADAY’S LAW, DISPLACEMENT CURRENTS,
THE RETARDED POTENTIAL

5-1
5-2
5-3
5-4
5-56
5-6

Faraday's Law

The Conservation of Energy ; The Poynting Vector
Momentum Conservation in Electromagnetism
Electromagnetic Mass

The Displacement Current

The Four-vector Potential and How It Is Modified Now
That Currents and Charges Are Changing with Time

6 LET THERE BE LIGHT!

8-1
8-2
6-3
6-4
6-5
6-6
8-7
6-8

A New Way of Calculating Retarded Potentials in an
Intuitively Appealing Manner

The Potentials of a Small Moving Charge
(Lienard-Wiechert Potentials)

Differentiating the Lienard-Wiechert Potentials ;
The Radiation Field.

Energy Radiation : Nonrelativistic Treatment
Polarization

The Scattering of Radiation by a Free Electron
Mathematical Supplement : Completeness and
Orthogonality

Mathematical Supplement: Fourier Series and
Fourier Integral

The Interaction of Radiation with a Charge in a
Harmonic Potential

7 THE INTERACTION OF RADIATION WITH MATTER

71

The Absorption and Reflection of Radiation by an
Idealized Conducting Sheet with No Magnetization

168
170
172

174
179

186

187
195
197
200
203

205

212

213
214
216
220
222
223
224
225

229

234

235



7-2
7-3
7-4
7-5

7-6
7-7

We Allow the Conductor To Have Magnetic Permeability u
The Physical Origin of the Refractive Index

What Happens When n < 17? Phase Velocity and

Group Velocity

The Index of Refraction in Terms of the
Forward-scattering Amplitude

The Faraday Effect

We Remove the Requirement of Normal Incidence;
Fresnel’s Equations; Total Internal Reflection

8 MULTIPOLE EXPANSION OF THE RADIATION FIELD:
SOME FURTHER CONSIDERATIONS ON THE INTERACTION OF
RADIATION WITH MATTER; INTERFERENCE AND DIFFRACTION

8-1
8-2
8-3
8-4
8-5

A General Statement of the Problem

Electric Dipole Radiation

Magnetic Dipole and Electric Quadrupole Radiation

We Reexamine the Passage of Radiation through Matter
Interference Phenomena from an Array of Discrete Dipoles;
The Notion of Coherence

Frauenhofer Diffraction by a Slit; Scattering by a Disk;
The Diffraction Grating

9 WAVEGUIDES AND CAVITIES

91
9-2
9-3

The Perfectly Conducting, Rectangular Waveguide
Ideal Rectangular Cavities

Loss in the Cavity Walls; The Notion of Q in General
and as Applied to Our Cavity

10 ELECTRIC AND MAGNETIC SUSCEPTIBILITY

101

10-2

10-3
10-4
10-5
10-6

Tables
Index

The Electric Polarizability of Nonpolar Molecules Having
Spherical Symmetry

The Relation between Atomic Polarizability and

Electric Susceptibility

Polarizability as a Second-rank Tensor

The Polarizability of a Polar Molecule

Diamagnetism

Paramagnetism and Ferromagnetism

CONTENTS

248
250

253

256
258

266

273

273
276
280
287

289

293

305
312

315

321

322

324
325
327
330
333

339
34



1
Mathematical Review
and Survey of Some New
Mathematical ldeas

It would be delightful if we could start right out doing physics without the
need for a mathematical introduction. Unfortunately though, this would
make much of our work immeasurably more laborious. Mathematics is
much more than a language for dealing with the physical world. It is a
source of models and abstractions which will enable us to obtain amazing
new insights into the way in which nature operates. Indeed, the beauty
and elegance of the physical laws themselves are only apparent when
expressed in the appropriate mathematical framework.

1



2 MATHEMATICAL REVIEW

We shall try to cover a fair bit of the mathematics we will need in this
introductory chapter. Several subjects are, however, best treated within
the context of our physical development and will be covered later. It is
assumed that the reader has a working familiarity with elementary calculus,
three-dimensional vectors, and the complex number system. All other
subjects will be developed as we go along.

1-1 VECTORS IN THREE DIMENSIONS:
A REVIEW OF ELEMENTARY NOTIONS

We begin by reviewing what we have already learned about three-dimensional
vectors. As we remember from our elementary physics, there are a large
number of quantities that need three components for their specification.
Position is, of course, the simplest of these quantities. Others include
velocity and acceleration. Even though we rarely defined what was meant
by a vector in mathematically rigorous terms, we were able to develop a
certain fluency in dealing with them. For example, we learned to add two
vectors by adding their components. That is, if r, = (x,,y,,z;) and r, =
(x3,52,2,) are two vectors, then

ry + I, = (xx + X2, V1 + Y2, 2 + 22)
If a is a number, then
arl = (axlsa}’loazl)

We also found it convenient to represent a vector by means of an arrow
whose magnitude was equal to the vector magnitude and whose direction
was the vector direction. Doing this permitted us to add two vectors by
placing the “tail” of one at the “head” of the other as in Fig. 1-1. We also
learned how to obtain a so-called scalar quantity by carrying out a type
of multiplication with two vectors. If r; = (x;,y,,2;) and r, = (x;,y5,25)
are two vectors, then r, - r, is defined by the equation

I oF = XX + )1Y2 + 212,

It was also shown that r, - r, could be obtained by evaluating |r, | |r,|cos 6, ,,
where |r,| and |r,| are, respectively, the magnitudes of r, and r, and 6,,

Fig. 1-1  The addition of two vectors can
be accomplished by placing the “tail” of
one at the “*head” of the other.




1-2 THE TRANSFORMATION PROPERTIES OF VECTORS 3

is the angle between them. Another so-called vector was obtained by taking
the cross product of r; and r,. That is,

ry X Ty = (Y12 — Y321, 21 X3 — 23Xy, X1V — V1 X3)

We shall have much more to say about the true nature of this beast very
shortly. At the moment we just recall that it appears in some respects to
be a vector whose magnitude is equal to |r, | |r,|sin 8,, and whose direction,
at right angles to both r, and r,, is given by a so-called right-hand rule in
going from r, to r,. If we look from the head toward the tail of r; X r,,
we would see the shortest rotation from r, tor, to be in the counterclockwise
direction.

Unfortunately, we shall have to relearn much of the above within a
more abstract framework if we are to make any progress beyond this
point. We shall have to go back to our basic notions and see if we can
define what we mean by vector in a more suitable, less intuitive manner.
Only by doing so will we be prepared to say clearly which combinations of
three numbers are vectors and which are not. We will also be able to define
scalar in a reasonable way and will then see our way clear to an under-
standing of higher-rank tensors.

1-2 THE TRANSFORMATION PROPERTIES OF VECTORS
UNDER SPATIAL ROTATION

To open the way for a more rigorous definition of vector, we proceed a bit
further with our old intuitive notions. Let us consider a so-called position
vector, that is, a vector from the origin of our coordinate system to the point
(x,y,2). If we draw a unit vector along each of the three axes as shown in
Fig. 1-2 and call them 1, , and k, respectively, we can write r = A + yj + zk.
Now, we ask, what if we were to rotate our coordinate system to a new
set of axes x’, y’, and 2z’ with a new set of unit vectors i, j, and k’? How
would r be expressed now? We answer this question very simply by expressing
1, ], and k in terms of the new unit vectors ¥, J', and k’. (This is possible

(x,,2)

Fig. 1-2 The vector r can be expressed as
r=ux + )] + zk where 1, }, and k are
unit vectors along the x, y, z axes.




4 MATHEMATICAL REVIEW
because any three-dimensional vector whatsoever can be expressed either
in terms of 1, ], and k or in terms of , J', and k’.) We write

1=a,0 +ayj + a5,k

= anl + ay) + as,k (1-2-1)

k = a1 + ay) + agsk
We note the obvious fact that

i1 =a, i-J =ay ik =a,,

]’]'=anz i’}'=azz j‘ﬁ'=“3z

k=4, kj=a, kk=a

’

This, of course, permits us immediately to express the unit vectors i, j’, and

k’ in terms of i, }, and k, viz.,

¥=a,1+a,] +a;k

V= a3 i + a0 + a3k (1-2-2)

R' = a3li + 0323 + a”ﬁ

We realize that not all the nine quantities g;; can be chosen indepen-
dently. After all, only three angles are necessary to specify the rotation
of one coordinate system into another. We expect then to have six equations

linking the coefficients. We obtain these equations by requiring that 1, §,
and k’ form an orthogonal set of unit vectors.

Vel =1=a,,%+a,*+a;;®
VoV =1=a2+ a;5% + a3?
Kok =1=a;2+a5" + a3’ (1-2-3)
T} =0=ay8; + ay;8; + ay3a35
J ok =0=a5a; + apa5; + as3a3;
k-7 =0=aya3, + a,,85; + ay3a,;

Now to return to our original vector r. We can write r in terms of its compo-
nents in either of two ways:

r=xi+yj+zk or r=xV+y) + 2Kk
Making use of Egs. (1-2-1), we find immediately that

x, = a“x + a‘zy + a”z
y, = a3 X + azay + Q32 (1'2‘4)
2 = a3, x + a3,y + a33z
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We have traditionally used a right-handed coordinate system to
specify the components of a vector. That is to say we have chosen 1, j, and
k so that if we curl the fingers of our right hand from i to j, our thumb
will point along k. Expressing this in language somewhat more abstract
and less anthropomorphic, we can say that i x j = k in such a system.
Obviously there is nothing in nature that requires us to limit ourselves to
right-handed coordinate systems, and we might ask if there is anything
special about the set of numbers a;; if the primed system should happen
to be a left-handed system. For a left-handed system we can write

dx])k=-1 (1-2-5)

Expressing I', J', and k’ in terms of 1, J, and k, we can rewrite this equation
as follows:

[(ai:1 + ay2) + ay3k) x (a5,1 + a55] + a53K)]
“(@313 + a3,] + ay3k) = -1
Carrying out the indicated multiplications, we find
ay,(a3,a33 — @33a3;) + ay,(a33a3; — a3,a33)
+ a,3(a3183; — azya3;) = —1 (1-2-6)

The expression on the left of Eq. (1-2-6) is called the determinant of the
matrix of numbers g;; or det g;; for short. It is often written in the notation

411 G2 Gy3
det aU = (121 azz 023

a3, Qaz; 4as;

We see then that any transformation that takes us from a right-handed
coordinate system to a left-handed coordinate system is characterized by
having its determinant equal to — 1. Indeed, as we can easily see, the deter-
minant is equal to — 1 whenever we change the handedness of our system
and +1 if we keep it unchanged. By allowing transformations with either
sign of determinant, we allow ourselves to deal with both rotations and
reflections or with any combination of these transformations.

We have begun to think of our transformation as having an “‘identity”
all its own. It is characterized by a set of nine numbers, which we have
called a matrix. Furthermore we have seen in Eq. (1-2-4) that we can obtain
the triplet (x’,y’,z’) by “multiplying” the triplet (x,y,z) by this matrix,
with the operation of multiplication being defined as

’

x ay; ay; ag; x ay x + a3y + a3z

’

YV i=1a8 83 ay||y]|=|aux+ay+ayz| (127

’

z Q3 Q33 Ai3 | |2 az X + azy + a3z
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We can represent the above operation symbolically by writing
r =ar (1-2-8)

(In the future, a boldface sans serif symbol, such as a, will mean that the
symbol is a matrix and not a number.)

Suppose now that we wish to undertake two successive transforma-
tions, the first characterized by a and the second by another matrix b.
If we begin with the triplet r, then the first transformation leads to the
triplet r’ and the second to the triplet r”. That is,

r =ar
r = br

Alternatively, we might have gone directly from the unprimed to the double-
primed coordinate system by means of a transformation c.

r =cr

Writing out these transformations in detail will show that we could determine
all the elements of ¢ directly from a and b by means of the simple set of
equations

¢y = byayy + byya;, + byaay,
€12 = byjay; + byya;; + byja;;

or, in general,
iy = byay; + biay; + bay,

We abbreviate this in the customary way by writing
3
Cu = Z b‘kau (1'2‘9)
k=1

Thus the element c;; can be obtained by taking the “scalar product,” so to
speak, of the ith row in b with the jth column in a.

The operation which we have defined above in Eq. (1-2-9) is called the
product of two matrices a and b and can be represented by the expression
¢ = ba. Matrix multiplication, unlike the multiplication of two numbers,
is not in general commutative, as the reader can very easily convince himself.
That is to say the product ab is not in general equal to the product ba.
Multiplication is, however, associative. This means that we can in general
write, for three transformations a, b, and c,

a(bc) = (ab)c (1-2-10)

To complete our picture we should point out that one of the possible
transformations is the identity transformation which leaves the coordinate
system unchanged. We write this matrix as 1 with the observation that
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0
1=|010 (1-2-11)
001

Returning back to Eqgs. (1-2-1) and (1-2-2), we see that for every transforma-
tion a there is also an inverse transformation a~! such that

aa '=a'a=1 (1-2-12)

The inverse transformation is just given by the transposed matrix. That is
to say

au-l = a}, (1'2'13)

(For those whose mathematical sophistication is just a bit above average,
we might point out that the set of all transformations defined above con-
stitute what is known in the trade as a group. The detailed properties of
groups play an important role in the development of much of quantum
mechanics and should be studied at the earliest possible moment by those
who intend to extend their horizons in physics beyond the classical domain.)

We can now think in terms of the complete set of all transformations
from one orthogonal coordinate system to another, including within our
set both rotations (det 8 = + 1) and reflections (det a = —1). The definition
of scalar, vector, and various other entities is now best done in terms of this
set of transformations.

Let us begin with what is intuitively the simplest of these entities, the
scalar. Imagine that we are given a set of explicit instructions for determining
some number. We follow these instructions scrupulously, coming up with a
value for the number. We can now rotate our coordinate system or change
its handedness (by means of the transformation a). If the same set of rules
for determining the number leads to the same result in the new system,
regardless of the choice of rotation or reflection, then the number is a scalar.

Obviously there are innumerable trivial examples of scalars that we
can readily cite. The number of cents in the dollar or the number of fingers
on your hand have nothing to do with the coordinate system and hence are
ipso facto scalars. Much less trivial, though, are numbers that are derived
by means of rules which concern coordinates themselves. Let us take a
simple example.

Suppose the rule tells us to take the x coordinate of a point, square it,
add to that the square of the y coordinate of the same point, and add to
the sum the square of the z coordinate of the point. We would have then a
number equal to x2 + y* + z2. If we transform to a new system and follow
the same prescription in the new system, we come up with x'2 + y'2 + /%,
Unless we knew the Pythagorean theorem we would have no a priori
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expectation that the same rule applied in these different systems would give
us the same result. Indeed it does because we have just determined the
square of the distance from our point to the origin, and that quantity does
not depend on the rotational orientation or the handedness of our system.
Clearly then the number x> + y* + z% is a scalar.

Let us try a more difficult example now. Consider two points whose
coordinates in one system are (x;,y;,z;) and (x,,y,,2,). We can form the
expression x;x, + y,¥, + z,z, and evaluate it in this coordinate system.
We can now transform coordinates and evaluate the same expression in
the new system, obtaining x}x% + ¥}y, + 2z,. Again we have no a priori
expectation that the two numbers will come out to be the same. Making
use of Egs. (1-2-4) and (1-2-3), the reader can easily convince himself that
this is, however, the case—the numbers are the same and so the expression
Xy1X; + y1¥2 + 2,2z, is a scalar. (The result is not entirely unanticipated
for we remember that this expression is the scalar product of r; and r,
and can also be written as |r, | |r,| cos 6. The latter formula does not depend
on the coordinate system.)

There is a great temptation now to let every ‘“‘constant™ of nature,
like charge and mass, be labeled a scalar. In fact we must be exceedingly
careful since an attribute like charge is defined operationally in terms of
forces by external fields, and we must investigate the behavior of the entire
system under both rotation and reflection before we can conclude that the
attribute is a scalar. We shall have more to say about this very shortly.

We go on now to the definition of another important entity, the
pseudoscalar. The pseudoscalar differs from the scalar in only one important
respect. The sign of the number we obtain by following our prescription
in a left-handed coordinate system is opposite to that we obtain in a right-
handed system. For pure rotations, scalars and pseudoscalars behave
identically.

To find an example of a pseudoscalar is not difficult at all. Let us take
three points in space which in one coordinate system have the components
(x1,¥1,21)s (X2,¥2,2,), and (x3,y3,23). We can construct a determinant D
out of these nine numbers:

Xy N1 5
X2 Y2 22
X3 V3 Z3
x1(¥223 = yaz3) + y1(22%3 — 23x;) + 2y(x293 — Xx3)3)
(1-2-14)

(It is quite clear that D is equal to r, - (r, x r3) and has magnitude equal
to the volume of the parallelopiped determined by r,, r,, and r;.) If we

-]
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