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Editors’ Foreword

We have given ourselves the job of helping to persuade you—a creative ecologist or
social scientist—that you have all the necessary capabilities to begin capturing your
unique expertise in simple, powerful simulation models that codify your knowledge
into a computerized analytical tool. Your model gives you the opportunity to share
your individual insights with your community of peers in the form of an easy-to-
use, science-driven computer program that they can in turn examine, use, extend,
and repurpose for their own work.

Simulation modeling is no longer the exclusive domain of elite computer scien-
tists and programmers. Practical and expedient models now can be written without
any mastery of low-level computer languages, numerical methods, or interface
design. Simulation modeling platforms are now available that facilitate experimen-
tation without bogging down the model builder in complicated software compiling
tasks or graphical output issues. Powerful, user-friendly model-development tools
have emerged—Dboth open source programs and commercial packages—that can be
mastered by anyone who has expert knowledge of a system, a fundamental under-
standing of desktop computers, and willingness to learn how to use software that is
considerably less complicated than the everyday “office” applications that vex us all
from time to time. You will find simulation modeling to be a gratifying and highly
empowering skill if you are interested in:

» Harnessing computer power to reflect the implications of your intuitive under-
standing of a system, and make supportable predictions based on them.

» Verifying whether your understanding of a system can be codified in a way that
replicates known system behaviors.

e Personally transcribing your intuitive expert knowledge into a transparent,
science-based framework without asking computer programmers to intervene.

In the preface to this book, Dr. Bruce Hannon describes how he has encouraged
a generation of social science and ecology students to climb the modest learning
curve within a few class sessions, and then apply their skills to building operational
simulation models in workgroups of two to eight. In his classes and the preface,
Dr. Hannon emphasizes the benefits that students will gain by acquiring formal, but
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expedient, simulation modeling skills. He illustrates how an individual’s deep
understanding of a system’s dynamics and behavior can readily be captured in a
form that computers can process to unveil hidden implications of system processes
that would otherwise probably evade conscious thought. Modeling enables you to
do what you are good at—describing the system—while enlisting the computer to
make supportable projections based on your expert knowledge.

This book is divided into two parts: (1) a technical orientation for prospective
modelers and (2) examples of expedient operational models developed using the
methods and tools described in Part I. The first part is intended especially for read-
ers with no substantive experience in model building, but it includes insights that
should benefit all modelers.

Chapter 1 addresses the topic of “modeling reluctance,” for lack of a better term,
that often inhibits ecologists and social scientists from acquiring model-building
capabilities. As Dr. Hannon notes in his Preface, this inhibition can affect research-
ers like you, who have built a large store of technical expertise based on both direct
observations from the field and an intuitive capability for drawing accurate infer-
ences about future system behavior based on changes to the environment. If com-
puter programming and higher mathematics are far removed from your daily
practice, it is not surprising that you would be skeptical about how these disciplines
might contribute to your work. Chapter 1 makes it clear that model building does
not require high levels of computer or mathematical expertise and explains that
modeling is already part of your everyday cognitive processes.

Chapter 2 describes a general process by which multidisciplinary groups may
use relatively simple software tools to model relatively complex domains. It pro-
vides a general project roadmap to help multiple researchers from different disci-
plines work efficiently and harmoniously toward creating a rich simulation model
in a very reasonable amount of time. These working guidelines have been used suc-
cessfully at the University of Illinois for more than a decade to teach nonprogram-
mers how to develop dynamic simulation models working in a computer lab
environment for several hours a week over a single semester. Most of the models
presented in the second half of the book were created as class projects by multidis-
ciplinary groups ranging from two to eight in size. Many of the team members were
new to computer-based modeling.

Chapter 3 introduces you to NetLogo (Wilensky 1999), the model-development
environment that was used to construct the models documented in the second part
of the book. NetLogo is a free, public domain model-building software platform
that enables you to describe the behavior of individuals within the spatial environ-
ment they inhabit. The individuals can interact with each other and their environ-
ment, and the environment itself may change according to its own dynamics. The
chapter also provides grist for traditional computer programmers: a short introduc-
tion to Repast Simphony, a free, open source agent-based modeling package devel-
oped by Argonne National Laboratory, U.S. Department of Energy (http://repast.
sourceforge.net/). Repast offers a migration path from simple NetLogo models to
more challenging simulation modeling environments preferred by computer scientists.
The fall 2010 release of Repast includes the ReLogo framework, which converts
NetLogo models to Repast compatibility. Once converted, a computer programmer
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can then integrate the NetLogo model with other models, run the model on more
powerful machines, and visualize and analyze model outputs in many useful ways
not natively available in NetLogo.

Part Il presents 11 simulation models, as documented using the Overview, Design
concepts, and Details (ODD) protocol (Grimm et al. 2006). This protocol, devel-
oped cooperatively by 28 professional modelers, is a standardized model documen-
tation specification intended to help a model builder clearly communicate the
essential contents of a simulation model as well as its assumptions and scope. The
purpose of the ODD protocol is to make the contents of a simulation mode] trans-
parent to a reader who has some knowledge of the specific technical domain for
which the model is built. This content format also makes it easy for the reader to
evaluate similar models side by side.

All 11 models documented in Part II (Chaps. 4—14), and their data sets, are avail-
able for download and use.' These models were developed in NetLogo (Wilensky
1999), and your learning experience will be greatly enhanced if you load and run
each model on your computer as you are reading about it in the book. You may
download a full, operable version of NetLLogo from http://ccl.northwestern.edu/net-
logo/. All models presented in this book have been tested to run in NetLogo 5.0.
Because NetLogo is programmed in Java (Oracle, Redwood Shores, CA), it oper-
ates on computers running Microsoft Windows, Macintosh OS X, or Linux.

Most of the models presented in Part I were developed and authored by students
who took a University of Illinois spatial simulation-modeling course taught by
Dr. Hannon, Dr. Charles Ehlschlaeger, and Dr. Jim Westervelt. They are grouped as
individual-based models (IBMs) representing animal populations in the wild (Chaps.
4-8), a river nutrient model (Chap. 9), patch and inter-patch valuation models
(Chaps. 10~12), and social models (Chaps. 13 and 14).

The first two models, fire ants (Chap. 4) and newts (Chap. 5), were developed by
students in the class to explore, respectively, control measures for red imported fire
ants (RIFA) in Texas and forecasting responses of striped newts to rainfall patterns
in Georgia. In both cases, a pair of students new to simulation modeling turned lit-
erature reviews and interviews with experts into conceptual and then working mod-
els. The next two chapters consider the gopher tortoise, a species at risk, in the
southeast United States. Chapter 6 captures a research effort that did not include
direct involvement by an ecologist familiar with the gopher tortoise, but did involve
experienced modelers. Conversely, the model in Chap. 7 was created by a team of
ecologists familiar with the tortoise but without any experience in simulation mod-
eling. This team quickly achieved proficiency with NetLogo.

The feral hog model described in Chap. 8 was developed by a team of seven
graduate students, none of whom had previously written software. Their purpose
was to test the hypothesis that adding a contraceptive program to an existing hunt-
ing policy would improve the control of wild swine on a military installation in
Georgia. At one point during the course, the sound of virtual gunshots cracked out
through the lab from computer speakers—NetLogo-generated hunters applying

' Operational copies of the models are available through http://extras.springer.com.
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“control measures” during a demonstration of work in progress. The model proved
so useful for testing the advantages of a proposed contraceptive program that one
student, now the lead author of Chap. 8, was funded to further develop the model.

Chapter 9 explores nutrient cycling in the Mississippi River, taking into account
the movement of nutrients via water currents in a pool on the river. River nutrients
cycle through several trophic layers as the water flow moves components of the
system downstream. This effort began with a nonspatial model written a decade
earlier that was adapted to produce spatial output in NetLogo.

The next three chapters explore the value of land in terms of its contribution to the
viability of a population. Habitat patches are analyzed in Chaps. 10 and 11. The first
of those traces the lineage of populations in patches over time with respect to the
original home of the original ancestors to reveal the relative connectivity among all
pairs of patches. The second documents a model developed to reveal the relative
value of each patch supporting a metapopulation in terms of sustaining the viability
of the metapopulation. The intent of this second model is to support the development
of an equation into which certain characteristics of patches, easily measured in the
field, could be used to compute a “patch valuation™ estimate. Chapter 12 looks at the
value of land between patches for supporting inter-patch migration, which is neces-
sary to connect populations into a broader metapopulation. This project translated a
published supercomputer-based model into the NetLogo modeling system. The result
is a very accessible model useful for experimentation and potential extension.

The final two chapters explore social science models that extend beyond natural
ecosystems. Chapter 13 considers a model that forecasts urban residential growth
patterns within a county based on the relative attractiveness of land to that growth.
Domestic violence is the subject of the model documented in Chap. 14. The help-
seeking behavior of violence victims is explored in a way that makes it possible to
test policy impacts on violence rates.

Each of these models demonstrates how students and researchers have captured
their understanding of dynamic spatial systems using a simulation modeling soft-
ware package. The models make it possible for users to experimentally manipulate
the system to test its response when subjected to alternate assumptions, conditions,
or scenarios. Our hope is that these examples will encourage you to do the same!

Champaign, IL, USA James D. Westervelt
Gordon L. Cohen
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Preface

The Simulation Model: A Left-Brain Tool
for Right-Brain Scientists

In the domain of ecology, there exists a huge source of information that is largely
undocumented and therefore unavailable to practitioners. It is expertise that is
sequestered in the individual minds of many field ecologists and rarely captured in
a form that is readily accessible by the greater community of practice. The nature of
this expertise differs depending on the interests and working style of the practitio-
ner. Some ecologists seek documentable precision in knowledge by investigating
natural systems through the collection of large data samples capable of producing
statistically verifiable insights. This quantitative approach can offer intimate and
accurate understandings of small subsets of an ecosystem. Other ecologists develop
their knowledge by conducting diverse case studies designed to inform a larger
overview. Both approaches lead ecologists to develop valuable insights on how
ecosystem components function and interact. Each individual’s growing expertise
constitutes a part of a rich, but uncompiled, knowledge base. It is available to the
possessor and associates for specific projects or applications, but it remains gener-
ally, if unintentionally, concealed from the greater community of practice.

Psychology informs us that people have two different modes of thinking, each of
which roughly correlate to one brain hemisphere or the other. Right-brain thinking is
considered to be more creative, intuitive, holistic, and spontaneous, while left-brain
thinking is considered to be more methodical, logical, linear, and analytical. In terms
of ecological research, the synthesis of big-picture results from many case studies rep-
resents a right-brain approach, and the development and analysis of large data samples
represents a left-brain approach. But because there is little overlap in the two approaches,
we often have to choose between keen but unverifiable intuition, on one hand, and hard
but never-complete data on the other. And these differences pose an understanding gap
between experts from the two different methodological approaches.

This gap may be illustrated by the following scenario. Over many years, a field
ecologist develops deep, intuitive insight into an ecosystem that makes it possible
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for him or her to forecast the consequences of proposed management actions on an
ecosystem, often with a very high level of confidence. A planner who is considering
new management initiatives may seek out the insights of the seasoned expert, whose
reputation the planner knows and trusts. The field ecologist’s expertise is often
rooted more deeply in experience and intuition than in peer-reviewed research. If he
or she wants to disseminate those insights to others beyond the immediate research
team or work group, prospective users must be able to verify the validity and appli-
cability of that expertise.

One approach the field ecologist can take to disseminate the use of hard-won tech-
nical insights is to apply left-brain skills to what is already understood intuitively—to
explicitly identify and analyze the cause—effect relationships that lie beneath the intui-
tive knowledge. A computer simulation model is an excellent tool for capturing and
representing such technical knowledge in a way that is highly explanatory and well
documented. A simulation model can employ validated algorithms plus data and alter-
nate assumptions to reflect the field ecologist’s insight into the implications of envi-
ronmental change or management actions. Simulation results can be compared with
the ecologist’s “instincts,” both to assess the validity of the model and to further illu-
minate the right-brain thinking behind it. Any gaps revealed between simulation
results and the ecologist’s deep understanding can be considered and addressed. As
the model is refined and simulation results match the right-brain understanding of the
system, the ecologist achieves an analytical validation of ideas that may previously
have been beyond the reach of the left brain. At that point, the model is ready to share
and to apply to specific cases, which can help decision makers and the general public
develop improved impact analyses and policy alternatives.

For more than 25 years, I have taught life science students at the University of
Illinois at Urbana-Champaign how to simulate dynamic biological phenomena on
computers. It is my favorite activity as a professor. Over the years, students have
modeled a full gamut of biological activity, ranging from the disciplines of micro-
biology to genetic engineering, and covering the dynamics of the individual cell,
bacteria, individual plants or animals, and large collections of organisms. I try to
help them learn that the intent of building these models is to better understand func-
tion and limits for the ultimate purpose of informing good management practice.

Regardless of my enthusiasm and best efforts, I have not had unqualified success
at teaching my students why I believe that dynamic modeling and the acquisition of
systems thinking capabilities are so essential to their future work. Below, I explore
why this has happened and what might be done about it. I also will clearly lay out the
general benefits of modeling. Students do well in my course in part because it is tai-
lored to minimize reliance on sophisticated mathematics and programming. We are
fortunate that model-building computer environments such as STELLA (isee systems,
Lebanon, NH) and NetLogo (Wilensky 1999) are now available to help students to
quickly and easily capture and document their ideas about biological dynamics as
computer simulation models. The models created using these tools enable my stu-
dents to clearly explain to me, to their other professors, and to the professional com-
munity the structure and dynamics of those areas where their specific interests lie.

Although students are not actively discouraged from model building by their
thesis supervisors, they are not actively encouraged to investigate it, either. Most of
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my students have enrolled in my modeling courses more on their own volition than
on someone’s advice. A second inhibitory factor is that modeling must be practiced
continuously in order to develop skills and internalize them. Because the typical
students in master’s or doctoral programs in this area are under high demand to
perform laboratory and field experiments, they find little time or incentive to build
models for the purpose of capturing their understandings of how systems work.

Ecology-oriented students are traditionally focused on hypothesis-driven case
studies and huge data collection projects that allow them to draw statistical inferences
about how their systems function. This approach to research rarely allows one to infer
behavior at one level from behavior observed at a lower level, or at one location in a
landscape behavior observed in another. It does not help students to formalize first-
principle understanding of the cause-and-effect functioning of their systems.

I have often speculated why this is the case. Is it because they are not trained in
simulation modeling at an earlier age, as are engineering students, for example? Or
do these students imagine that modeling and simulation require skills that are
beyond their reach? (The ease of modeling using new and evolving software envi-
ronments could dispel that notion, given some introductory hands-on instruction.)
Or do such students really so love nature that they simply seek the means to dwell
within it through ecological fieldwork? I would argue that this love of nature might
be significantly enriched by starting the journey with a set of hypotheses, followed
by a modeling exercise that can verify and improve their understanding of their
system. A model offers students a means for testing their assumptions and questions
and for identifying the parameters that must be investigated and verified by lab or
fieldwork. It also can help students understand which parameters are the most
important and which can be reliably derived from the literature.

I begin each course by sharing the idea that education has been evolving since
literacy was solely found within the monastery, through the time when we realized
that numeracy was required to distinguish the importance of our assumptions, to the
present, when we find it necessary to add systems thinking to the list. Systems
thinking helps us to more accurately formulate pertinent questions about the phe-
nomena that interest us. As with the acquisition of literacy and numeracy, skill in
systems thinking improves with practice. And the level of practice increases with
improved understanding of the power of systems thinking. This explanation leads to
my discussion of the power of systems thinking, and how dynamic systems simula-
tion on the computer provides the key to this power.

It helps us to understand that we all model the dynamics of the world around us.
We instinctively know how to duck a stone thrown at us, we know how to safely
cross a street in fast, heavy traffic, and how to hit a baseball. We do this by first
formulating a mental model of the process and the probable consequences of various
alternative actions. We evolve this model by our own trial and error and by observation
of the actions of others. Given that we all routinely construct mental models, it
should come as no surprise that we can increase the complexity and explanatory
power of those models by extending them with computer power. The application of
computers to our models of the world expands the reach of our mind in a similar
way that the telescope and microscope extend the reach of our eyes.



xii Preface

When we try to extend our mental models exclusively through thought to solve
complex social, political, or economic problems, for example, we encounter three
specific difficulties. First is the uncertainty of our grasp of the important features of
the problem; second is the effects of responses to our interventions or to internal
forces driven by complex feedback loops; and third is the delay between the inter-
ventions (or forces) and the reactions to them. This uncertainty—these feedbacks
and delays—can so complicate the dynamics of a system that the human minds can-
not account for them all unaided. Society has reached the point where the complex-
ity of environmental, interpersonal, and interagency connections is growing faster
than the human mind can evolve to comprehend them. So instead of waiting for
evolution, humans invent the means to extend our senses—and now, our capacity to
apply logic—in order to master the complexities of the system in a timely way. To
my mind, that is the great promise of simulation modeling technology.

But what are the specific benefits of computer-aided dynamic modeling? Over
the years, with the help of many others, I have compiled a list of such benefits.
Presented roughly in order of importance, dynamic modeling:

1. Can highlight the gaps in our understanding of the system processes. The con-
struction of a computer model requires us to systematically lay out the stocks and
flows within a system and to identify the nature of the systems controls. It helps
us to establish a hierarchy of importance of system parameters. It enables us to
identify and challenge the assumptions behind our understanding of the process.
Simulation results, along with clear documentation of the model structure, make
it possible to provide a common frame of reference for all those involved in
studying and managing the system.

2. Provides a system memory. Model building is the process of formally building
and joining models of the component parts of a system to create a published
description of it. Every validated model iteration contributes to a more realistic
model of the whole system for everyone who is interested.

3. Reveals “normal” system performance. Large changes in a system’s behavior
are, many times, just rare events that a good system model would show to be
expected and at what frequency. Managers of such systems, without the aid of a
model, tend to implement changes based on the occurrence of these rare but
potentially expectable events. Such management actions, if based on a misdiag-
nosis of the environmental stress, can produce delayed reactions that have the
potential to throw the system into disarray.

4. Allows testing what-if scenarios and experimentation with various kinds and
levels of system management. A dynamic model makes it possible to see what
happens when a system fails without any real-world consequence, and at far
lower cost than witnessing an actual failure of the real system.

5. Provides quantitative information about the system operation at organizational
levels (e.g., landscape or biome) and time scales (e.g., centuries) not ever expe-
rienced by observers of the real system.

6. Reveals emergent properties of the system, such as reactions and new states
anticipated by no one involved in the study of the system. In other words, a
dynamic model makes it possible to develop realistic predictions of a complex
system under dynamic conditions.
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7. Allows for “mediated modeling,” which involves all appropriate experts and
stakeholders, and facilitates the development of consensus in complex or contro-
versial situations. Current software is user-friendly and transparent enough that
novices can quickly understand that their views are being accurately captured in
the model. Once this is accomplished for all of those involved, the simulation
results are more credible and, therefore, more readily accepted by all. Mediated
modeling also can shed light on the accuracy of contending theories about sys-
tem functions.

8. Promotes the accurate formulation of novel, previously unanticipated questions
about system performance.

If these benefits provide sufficient motivation for the student to begin the inves-
tigation and practice of model building, then it is appropriate to generally outline
what is involved in the modeling process.

The most suitable environment for creating spatially explicit dynamic models
will be simple to learn but capable of handling high complexity. It should serve as a
stepping stone to compiled modeling languages such as C+ when the form of the
model has become fixed and intensive parameter testing is required. The program-
ming language should make maximum use of symbols for the state and control
variables in order to take advantage of our ability to quickly understand such sym-
bolism. The programming language itself should be capable of handling statements
in English-like language and provide efficient input from data sources. The lan-
guage should be capable of graphical data input and have some ability to model
spatially. It should allow easy testing of the effects of parameter variation.

STELLA (http://www.iseesystems.com/) fully meets these requirements, so it is
ideal for those who are beginning to model and wish to explore while easily chang-
ing model structure and controls. STELLA is a simulation modeling environment
that allows one to graphically capture the cause—effect relationships of a system that
affect state variables. Equations and logic are then added to determine rates of flows
in the state variables during a predetermined time step. When the model is finished
to the developer’s satisfaction and is ready for extensive parameter sensitivity test-
ing, curve fitting the model results to known data, or optimizing a certain state vari-
able, another program is needed. My students use Berkeley-Madonna (http://www.
berkeleymadonna.com/) to transform a STELLA model into a compiled form that
runs many times faster than it can natively in STELLA. The Berkeley-Madonna
program (1) runs extensive parameter sensitivity trials, (2) fits the model results to
a given set of data, and (3) optimizes a given state in the model. The second item
treats the model as though it was a regression “equation,” allowing that equation to
embody all of our specific understanding of the system.

STELLA is most useful for modeling systems that are homogeneous in space.
If the dynamic system model requires specific location-dependent detail, one can
develop the model for each cellular space (or cell) in STELLA, and then translate
those into the NetLogo modeling environment (Wilensky 1999, http://ccl.
northwestern.edu/netlogo/) to capture the spatial dynamic process. Each parameter
is set using a digital map to represent its geographical variation.
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The NetLogo environment is the best compromise between the simple programming
requirements of STELLA (which is ideal for either a single-cell model or a spatial
model with no more than, say, 25 cells) and the complex programming required to
knit thousands of cellular models together into a dynamic whole. One can learn a
significant amount from a STELLA model, and it is always useful to begin one’s
ecological modeling there. But the resulting model will need to be restated in
NetLogo with added programming to incorporate the maps of the constants and
initial state values. It is quite possible that the slightly more demanding program-
ming skills needed for using NetLogo will eventually evolve into an even simpler
procedure. Our practice is to use either free or commercially available software and
concentrate on the process of modeling instead of developing a spatial modeling
program of our own.

Having taught the spatial dynamic modeling course at the University of Illinois
for more than 20 years, with the help of Dr. James Westervelt and Dr. Charles
Ehlschlaeger, we have evolved what I believe to be the best current way to learn the
process. We start the class by dividing the students into teams of two or three, with
each team focusing on a specific set of modeling questions. The first 2 weeks are
spent learning NetLogo, and the rest of the course is devoted to finishing the model,
preparing the map data, and answering the modeling questions.

Some class projects have blossomed into large follow-on projects, including
master’s theses and doctoral dissertations. The LEAM urban development model
(http://www.leam.uiuc.edu/) originated in this class and is now the basis of a com-
pany and a university laboratory. Our model of the Mississippi River aquatic eco-
system is another such project, having begun in the class and now the basis for a
major interuniversity project. As these models matured and grew to the point of tens
of millions of cells, the programs were rewritten in C++, which greatly accelerated
simulation speed but required more esoteric knowledge to revise the model.

[ cannot overstate to life science and social science students the importance of first
formulating clear and concise questions about the phenomenon of interest. After that,
they should construct a model—first in STELLA—of the part of the ecosystem that
is most directly relevant to answering their questions about it. This two-phase pro-
cess, if well executed, will reveal after relatively little time and expense the param-
eters to which the model is very sensitive. Discovering the values of these key
parameters becomes the objective of their lab and field experiments. Data from the
literature may be sufficient to obtain the rest of the parameters. This process reduces
the overall research work and makes its progress more predictable.

Urbana, IL, USA Bruce Hannon
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