Proceedings of
2012 International Symposium on

Information Technologies in Medicine and
Education (ITME2012)

August 3-5, 2012
Hokkaido, Japan

Edited by
Xiangwei ZHENG

Xiaohong JIANG
Hong LIU
Peiyu LIU

Proceedings of
2012 International Symposium on

Information Technologies in Medicine and Education copyright

and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to
photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume
that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid
through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying,
reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes
Lane, Piscataway, NJ 08854. All rights reserved. Copyright ©2012 by IEEE.

Compliant PDF Files
IEEE Catalog Number: CFP 1253E -ART
ISBN: 978-1-4673-2108-2
Conference CD-ROM Version
IEEE Catalog Number: CFP 1253E-CDR
ISBN: 978-1-4673-2107-5
Print Version
[EEE Catalog Number: CFP 1253E -PRT
ISBN: 978-1-4673-2106-8

Publisher: Institute of Electrical and Electronics Engineers, Inc.

Printed in Beijing, China

505-11089

506-11090

507-11096

508-11101

509-11104

510-11106

511-11114

512-E-5-01

513-11122

514-11132

515-11135

516-11142

517-11144

518-E-4-01

Jiayang Niu,Hongguo Wang,Shuxia Dong, Chaochao Song

Feasibility and Strategy Analysis for Library Knowledge Service Based on
Knowledge Management
WANG JINGNA,LIU JUAN

A Collaborative Simulation Monitor System of Ship Based on Patterns
Wu Jun, Li Xiaojun,Liu Shufen

The primary exploration of "guiding, helping, promote learning and happy to
learn" typeTeaching Model of open education
Wang junfeng

Reform for Experiment System of Mechanical Design Manufacturing and its
Automation
Zheng taixiong, Wang ping, Lv xiafu, Zhang kaibi

The Research on Information Filtering Model based on Immune Self-learning
Mechanism
ZHANG Hui, LU Ran

The Relationship Between Speciality Identity and Achievement Motivation,
Personality in Medical Postgraduate
Zhu Shu,Xin Hong

On the Constructionist’s Teaching Methods and Class Architects
Chai Zhengmeng, Chai Zhengmeng

Using LEGO Mindstorms in the Undergraduate Curriculum of IT

Xiaomei Yu

Innovation Pattern Analysis of The Industry-University-Research
Cooperation
Zhao Yang,Liu Qixia

The application of Information Technology in medical education in China
-Using Guangxi Medical University as a case study
Mo Shurong, Tang Zhong, Wei Xiaomin, Chen Weiping, Wei Bo

Study on library’s competitive intelligence service of Sport College
Zhang Yongtao

On Relationship among Art University Students’ Self-directed Learning
Readiness, Learning Satisfaction and Performance
Zhao Weijun

International Cultivation of Talents for Wood Science and Engineering
Specialty based on “ABC-KAQ model”
Yuan Yuan, Guo Minghui

A Teaching Quality Evaluation System based on PSK-means Clustering
MA Hong-wei,ZHENG Xiang-wei, WANG Zhi-hao

(2]

238

241

246

252

256

260

265

270

274

282

285

289

292

2012 INTERNATIONAL SYMPOSIUM ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION

A Collaborative Simulation Monitor System of Ship Based on Patterns

Wu Jun
Department of Computer Science and Technology
Jilin University,
Changchun, China

Email: wujun0829@hotmail.com

Li Xiaojun
System Engineering Research Institute
Beijing, China
Email: wujun0829@hotmail.com
Abstract—Computer simulation has been widely used in
scientific research. But the present simulation systems are
mostly designed for a specific purpose, which can only be
applied in specific research experiment, so the expansibility is
not good. The main purpose of pattern technology is to extend
the technologies of software reuse based on Object Oriented ',
Pattern technology can reuse not only the codes of function
modules, but also the structural design of system software. In
the design and implementation of the collaborative ship
simulation monitor system mentioned in this paper, kinds of
pattern technologies have been used. The system has not just
the characteristics of high efficiency, easy to extend and

maintain, but also the characteristic of high reusability.

Keywords-Pattern; Collaboration;Simulation;Monitor system

I. INTRODUCTION

With the rapid development of computer science, the
computer simulation technology has provided a strong
support for scientific research experiment. But the current
simulation monitor systems are mostly designed for a
specific research task. Thus the application of the system is
quite limited. Once a new research task needs to be
accomplished, it is necessary to develop a new
corresponding simulation system. As a result, a great deal of
resources will be expended on developing the corresponding
system. Object-Oriented technology of computer science has
become more and more mature. The advancement of pattern
technology has made us pay more attention to the reusability
of the codes when we are developing the system **). One of
the most important purposes of Object-Oriented technology
is to make us better achieve the reuse. Therefore, reasonable

patterns mode should be used in the simulation monitor

978-1-4673-2108-2/12/$31.00 ©2012 IEEE

Liu Shufen
Department of Computer Science and Technology
Henan Polytechnic University,
Jiaozuo, China
Email: liusf@jlu.edu.cn

system to make it more flexible in the design and
implementation, at the same time to maximize the reusability
of the system, and lower the cost of developing in the future.
In the design and implementation of the collaborative ship
simulation monitor system * 31 described in this article, we
add in the pattern technology while using the collaboration
and simulation technologies, in terms of expansibility and
reusability, it has certain advantages. The function modules
of the system work together and coordinated to complete

simulation monitor tasks through message passing.

II. RELEVANT TECHNOLOGIE

A. Hierarchical architecture mode

Component system is based on a specific structure,
which is just the architecture. Software system is a single
entity that is made up of components. These components
constitute the software system with certain architecture, so
each of the software systems has a specific architecture.
Software architecture defines a system made up of
components and their relationships. Architecture is the
framework of the software, and it needs to adapt to the
changing needs, so we will need a reasonable architecture
model to design the software structure. Some of the common
architecture models are: broker architecture model,
hierarchical architecture model, C/S model and so on. The
architecture model used in this article is mainly the
hierarchical architecture model >, In the system, applied
with hierarchical architecture, each layer is a subsystem, and
combined together by the layer.

The idea of dividing layer is to break a big problem into
some independent subproblems, each layer provides the

solution of the corresponding subproblem, reducing the scale

and complexity of solving the big problem. The typical
hierarchical architecture is: the presentation layer, business
layer and data layer. Adjacent layers communicate with each
other and work together to provide a total solution to
complete the functions of the entire framework. The
hierarchical architecture has a good expansibility and the

system with it has a high reusability.

B. Design pattern

Design pattern is a unified programming method %, it is
a masterly summary of pattern in the design of
object-oriented software. It summarizes software design
structure, and will be referenced repeatedly in the design of
software in the future. It describes the solution to a recurring
specific problem. The solution records the component parts
of solving a problem, as well as the function of each part and
their mutual relationships. There are many kinds of design
patterns, each design pattern has its own characteristics and
application scope, and it is used to solve the issues with a
specific abstract type. The major design patterns are:
observer pattern,

strategy pattern, composite pattern,

command pattern, facade pattern and adapter pattern.

C. Hierarchical architecture added in design pattern

Software architecture defines the interrelationships of
the components that compose specific software, describes
the entire framework, organization, coordination control and
other information of the software. Software architecture
mode targets a specific domain or problem class. However,

highly the
the highly

According to design pattern, we can achieve the reusability

design pattern is abstract, describes

implementation of reusable components.
of the components and the codes. Design pattern is not for
specific problem class, but provides the solutions to abstract
problems.

In the hierarchical architecture mode, we add the design
patterns based on frequency comparison, such as: command
pattern and facade pattern. Due to the frequent operation
between the business layer and the data layer in hierarchical
mode, when the entity object in the data layer changes, many
objects in the upper business layer will be affected. Through
introducing command pattern, we can add an entity object of
the command pattern between the business layer and the data
layer, making the interactions between the data layer and the
business layer integrated and forwarded by the entity object

of command pattern. Such a mechanism separates the data

242

and business layer, reduces the coupling degree of data layer

and business layer.

D. 3D modeling with OpenGL

OpenGL is actually an interface between graphics and
the hardware ", It contains a rich and powerful graphics
functions, it is not necessary for the developer to write the
data of 3D model in a fixed format. Thus the programming is
more flexible and the develop efficiency is improved.
OpenGL has the following seven functions: modeling,
transformation, color mode setting, lighting and material
setting, texture mapping, bitmap display and image
enhancement, double buffering. The basic flow of OpenGL

is as shown in Figure 1.

Vertex
Operating
Vertex) _ And Pixel i
— - o Frame
Data _’-_TGcomclm Segment Buffer
Element Operating
Assembling |
|
— Display '
—{ List :
I
|
I
|
. »ln: Texture I
" 1 Pixel | s
Pixel Ohgeiation Assembling :
1111 NP P —— IPRIEION: g T T e s e e
Figure 1. The basic flow of OpenGL

In this paper, we use the OpenGL to complete the 3D
simulation of the two observation platforms at both ends of
the ship. In order to observe the specified seas, the two
observation platforms will adjust their azimuth and pitch
angles according to the control message received from the

upper layer.
ITII. SYSTEM DESIGN

A. Framework design

The Design of our system architecture is based on
hierarchical architecture. During the designing, we bring in
the idea of design pattern. The introduction of design pattern
makes the system architecture more flexible and efficient, at
the same time the reusability of the system is improved.

According to the hierarchical architecture mode, the
system is divided into different layers. From the top
downward contains the presentation layer, business layer,
entity model layer and network communication layer. The
system communicates through the interfaces provided by the

layers and works together. After introducing the suitable

design patterns, we can improve the communication

— . M Inner382RadarFightPath
efficiency and reduce the coupling degree between layers. g e e
)) [radar 382 fight path message : RADAR 382 FIGHT PATH_MESSAGE
Thus the framework at all layers can be easily modified and +CMessagelnnerd82RadarFightPath()
maintained. i;f:g(c)sszgelnnedﬂRadarFlghlPalh()
is +Receive(in *messageln : char)
B. System structure and composition i = -
-m_CommandProductTime
The main purpose of the collaborative ship simulation -m_MessageCelldenifier : i
purp p | 5 MessgeCellibeifienes CMessagelnnerOwnShipParameter
monitor system is to get the outside seas information, and -m_MessageDestination -m_ownship_message: OWNSHIP_MESSAGE
-m_MessageLength Y Sk
. . . . (8] i . v = VLB [+CMessagelnnerOwnShipParameter()
visualize the information . So the visualization of the -mimessageggqucnceNumber 4 CMessagelnnerOwnShipParameter()
. -m_Messagedource
command and control system is enhanced. The framework e tSend)
+CMessage() +Receive(in *messageln : char)
design has given the general structure of the system. Each CMessage()
X . . . +BatchNumber_TtoH()
layer contains a different function module. These function +double_ntoh() CMessagelnnerCenterFightPath
. . +Hloat_ntoh() — 3
modules communicate with each other through the jget commandProductTime() -m_center fight path_message : CMessagelnnerCenterFightPath
L. . +oet messageCellldentifier() +CMessagelnnerCenterFightPath()
network communication coordinated to complete the task. tget messageCellldentifierinner() +~CMessagelnnerCenterFightPath()
The system is mainly composed of the information tget_ messageDestination(ted)
+get messageLength() +Receive(in *messageln : char)
transmission module, the surface display module and the fget_ messageSequenceNumber()
. X . +get_messageSource()
3D simulation model display module. The system +Receive() CMessagelnnerCETFightPath
. . . +ReceiveHead Inner() — = - e
structure is as shown in Figure 2. ReceiveHeadOuter() -m_cen_fight path_message : CMessagelnnerCETFightPath
.. +set_commandProductTime() ‘Cl\"lessage!nncr(‘P}'I:Fighﬂ’ath()
: : +set_messageCellldentifier() [+CMessagelnnerCET FightPath()
st messageCellldentifierlnner() +Send()
' +set_messageDestination() +Receive(in *messageln : char)
Text . tset_messagel.ength()
- . X +set_messageSequence()
lnltumanon * +set_messageSource() (MessagelnnerCommandStatus
Display : *ge“:(H)LAM 0 -m_command status_message : COMMAND _STATUS_MESSAGE
. g . . N +en CSSage!
Peripheral | : |Information Reception ; tSendMem:,()ag +CMessagelnnerCommandStatus()
Devices © | And Transmissionn : :;Sm““g“'""°TC°"““a"ds'“‘“5(’
: . . +Receive(in *messageln ; char)
Simulation
Display
(CMessagelnnerQutSystemStatus
-m_outsystem status_message : OUTSYSTEM_STATUS MESSAGE
. 5 [+CMessagelnnerOutSystem Status()
RN G GO U GTER 0 G 1 BVUIEE SRTAS ST sed vim ey canies b ' +CMessagelnnerOutSystemStatus()
Fi 2 T . +Send()
LBHEEs e system structure +Receive(in *messageln : char)

IV. SYSTEM IMPLEMENTATION
) ‘ Figure 3. The static structure of the classes in the network communication
A. Implementation of the information transmission module
layer
The information transmission module is at the network This module interacts directly with the peripheral

communication layer of the hierarchical architecture mode. devices. The interaction includes both receiving and sending

The relationship between the communication classes in the message: On one hand, we can receive the messages sent by

layer and the static structure of them is as shown in Figure 3. the peripheral devices in real time in the simulation test.
Through the corresponding network layer class, data in the
received messages will be stored into the corresponding
entity objects. The function of receiving message can be
completed by the function Receive() mentioned in the above
figure. On the other hand, in the simulation test, the network
communication classes need to send simulated messages to
the simulator, and simulate different messages. This function
can be completed by the function Send() in the

communication subclasses.

243

The abstract class CMessage needs to create different
communication subclasses, depending on different message
IDs, and then send or receive messages in appropriate format
of the corresponding communication subclass. The design
intent of Factory Method is to define an interface used to
crate objects, and let the subclass decide which class to be
instantiated. In a word, Factory Method puts the instantiation
of a class off till its subclass. In the design and
implementation of the module, the factory method pattern
was introduced. Through designing and building the class
the

message identification in the message header, and to specify

InnerMessageFactory (Factory Method) to detect
the object of which communication subclass that we are
going to create. Since Factory Method won’t bind any
classes related to a specific application to the program codes
any longer and the codes just deal with the CMessage
interface, it can be used together with any communication
subclass. The use of Factory Method can also bring the
following benefit: Provides a hook for subclasses, it is
usually more flexible for creating objects by using Factory
Method than creating them directly. Factory Method gives
the subclasses a hook to provide an extended version of the
object. In the class InnerMessageFactory, we can create the
objects of the communication subclass dynamically.
Therefore, it is more flexible to send and receive messages

and easier to expand and maintain.
B. Implementation of the surface display module

According to the object’s property information at the
entity model layer and the requirements of the display
format, the surface display module needs to show the
information to the operator in the form of text. At the same
time, it receives the entity information of the simulation
model, and displays the corresponding 3D model. The
design intent of Observer pattern is to define a one-to-many
dependency between objects, once the state of one object
changes, all the objects that depends on it will be notified
and updated automatically. In view of this characteristic, we
use the Observer pattern to complete the module, and it has
the following advantages by using the Observer pattern:

1. The coupling between the goal object and observer is
abstract. What a goal object knows is just that it has a set of
observers, each of which supports the interface provided by
the abstract observer class. While the goal has no idea of
what a specific class does an observer belongs to. Thus the

coupling between the goal and observer is abstract and

244

minimum.
2. Support for broadcast communication. Unlike a usual
request, the notification sent by the goal does not need to
specify the recipient. It will be broadcast to all the objects
that have already been registered to the goal object.

The

presentation layer of the hierarchical architecture. The

surface display module is located in the
presentation layer combines with the Observer pattern to
abstract the display class of different types, according to
different view display formats. This module is going to
create a specific display object through the Observer pattern.
In the development of the project, an interface developing
plug-in named BCGControlBar is used. According to the
operator’s operations, the software will select different
views. While the building of a specific view object is based
on the instructions of the observer object, inheriting a
specific subclasses of the BCGControlBar view class. The
function of surface display is implemented by calling the
interfaces provided by the constructor of the surface located
in the business layer. The surface abstract class is built in the
business layer, and the business layer will build a specific
subclass according to the commands provided by the
Command pattern. The business layer first provides the
definition of the surface abstract class, and a specific view
class will inherit from the subclass of the abstract class.
When a command object is passed to the abstract class, the
business is going to create the corresponding view class
objects depending on the commands. The static structure and
the inheritance relationship of the classes are as shown in

Figure 4.

Command

|

TargetTable

I+ Display TargetTable{)

+OnSize{in nType, in X ' mL incy nt)
[FOnCreate()

+OnPaintl)

/W'TK

Target382Table TargetCenter Table TargetHQ16Target
m_Target382TableList m_TargetCenterTableList -m_TargetHQI 6TableList
Fm_Font bm_Font m_Font
-m_TargetNode - Radar382Tracklnfo m_TargetNode - CenterTrackinfo m_TargetNode - CETTrackInfo
m_Target RADAR 382 FIGHT PAHT INFO | fin_Targer: CENTER_FIGHT PAHT INFO| |m_Targer CET_FIGHT PAHT INFO

+Display TargetTable() + Display TargetTable() H Display TargetTable()

+OnSze(in nType, mex L mcy int) [*OnSize(in nType, inex - int, in cy - int) FOnSize(in nType, in o - ia. in cy - int)
+OnCreat) +*OnCreatel) +OnCreate()

+OnPaint() +OnPaint() F+OnPaint()

[*OnSctFocus() [+ OnSctFocus() +OnSetFocus)

Figure 4. The static structure and the inheritance relationship of the

classes of the surface module

C. Implementation of the 3D model

The 3D simulation model located in the entity model
layer is based on the technology of OpenGL. In OpenGL, the
geometry units are all described by vertices, allowing the
evaluator and vertex operations to be calculated on each
vertex. Then through the rasterization to form graphic
pieces!”. At last, these graphic pieces are sent to the frame
buffer after a series of operations to display the graph.
GLUT (OpenGL Utility Toolkit) has been used to help draw
the 3D model in this module. Since the GLUT is a window
system-independent and hides the

complexity of the APIs provided by different window

software toolkit
systems, it makes the application has a high degree of
portability. This mode is completed mainly by constructing
three classes: class Shiplnfo, class ShipEntity and class
FormsView. The class Shiplnfo stores the parameter
information of the 3D model. In the implementation of the
module, it receives the related data information from the
network communication layer by the interface provided by
the class ShipEntity, and then calls the drawing functions
implemented in the class FormsView to draw the 3D model.

The model in a specific state appears as shown in Figure 5.

Figure 5. The 3D model in a specific state
In figure 5, the two 3D models located in the left and
right sides are the 3D simulation of the two observation
platforms at both ends of the ship. The top of the figure
displays the real-time information of the observation
platforms and the ship. While the middle of the figure

displays the ship state according to the received message.

V. SUMMARY

The design thinking of this collaborative simulation

- 9
monitor system 2 10]

is clear, and the implementation is
flexible. Through transmitting information between the

various functional modules, they are coordinated to complete

the monitoring task, easy to maintain and extend, and with
good reusability, which is the main feature of the system. In
the design and implementation of the system, a large number
of object-oriented technologies have been introduced in,
including system architecture mode and design pattern. The
hierarchical architecture mode has been used in the design of
the framework. An object layer is added between the various
layers to support the mutual communications, which reduces
the coupling degree of the layers and improves the efficiency
of the system. In the implementation of each layer, the
technology of code reuse and kinds of design patterns are
used. While in the construction of the basic classes, template
technology is used, so each function module has a good
flexibility and high level of code reuse. OpenGL technology
is used in the 3D modeling, which makes the development
flexible and fast.

But due to the overall grasp of the design pattern is not
yet so good, therefore the introduction of some design
pattern is not entirely suitable. In 3D modeling, the texture
mapping and lighting of OpenGL still have some room for
improvement and optimization. In the future study, I will be
more in-depth understanding of design patterns and the
related knowledge of OpenGL, hoping to better improve the

system.

REFERENCES

Chen Zhaoliang, Wang Qianxiang, Mei Hong et al, Dealing with the
Variability in Object-oriented Design [J]. Acta Electronica Sinica, Vol.
29 No. 11, 2001.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns:
Elements of Reusable Object-Oriented Software [M]. Li Yingjun, Ma
Xiaoxing et al, translate. China Machine Press, 2011.

S. Srinivasan, Design Patterns in Object-Oriented Framework [J].
Computer, Vol. 32 No. 2, 1999.

Chen Yu, Liu Shufen, Zhu Yongwen, “Framework Design of the
Distributed Military Simulation System Based in CSCW™ [J]. Ship
Electronic Engineering, Vol. 28 No. 1, 2008.

Li Pan, Liu Shufen, Zhang Xinjia, “A Distributed Command and
Control Simulation System Framework Based on Design Pattern™ [J].
Journal of Jilin University (Science Edition), Vol. 46 No. 3, May
2008.

Wang Qiyuan, “The latest Method of Simulative Monitor Control
System the Research of Three-level Client/Server Model” [D].
Wuhan: Wuhan University, 2006.

D. Shreiner, OpenGL Programming Guide [M], 7" ed. Li Jun, Xu Bo
et al, translate. China Machine Press, 2010.

Sun Weigiang, Pi Yiming, Cao Zongjie, “A Monitor System for
Airborne Fire-Control Radar Simulation System Based on HLA™ [J].
Vol. 26 No. 11, Nov. 2009.

Cao Wei, “Computer Supported Cooperative Design System:
Integration Model and Realization Method” [J]. Journal of Eastern
Liaoning University (Natural Science), Vol. 17 No. 1, Mar. 2010.

(9]

[10] Zheng Hongbo, “The Research and Implementation of Computer
Supported Cooperative Design System” [D]. Changchun: Jilin

University, 2004.

