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Trigonometry is designed for use in a one-semester or one-quarter
course in trigonometry, with a prerequisite of intermediate algebra. A
background in geometry is desirable, but many students take trigono-
metry with little or no formal geometry. For this reason, the geometric
concepts used in the development of trigonometry are reviewed in
Chapter 1.

Since a standard trigonometry course is a prerequisite for a pro-
gram of study in calculus, we pay special attention to the development
of the concepts needed for calculus. We hope that the student using
this text will become proficient in setting up the type of geometric dia-
grams needed to solve an applied calculus problem and will attain an
appreciation and understanding of the identities that are so important to
calculus. To address these goals we have given special emphasis to
geometrical constructions throughout the first two chapters, and we
present most of the major identities at least twice. Many of the
identities have very simple geometric derivations; we develop a number
of them in Chapter 2 along with some of their geometric applications. In
Chapter 3 we present a unified treatment of the identities so the student
will learn how to derive them from the sum and difference formulas.

Chapter 1 contains the necessary geometric background. In Sec-
tion 1.1 we summarize basic definitions and facts. In Section 1.2 we
present the degree and radian systems of angular measurement, and
we discuss the methods for converting from one system to the other.
Section 1.3 reviews the Theorem of Pythagoras as well as its converse
via the geometric versions of the Law of Cosines. In Section 1.4 we
define angles of arbitrary measurement in terms of a rectangular co-
ordinate system. Finally, Section 1.5 reviews the concept of similarity;
it also discusses the Theorem of Ptolemy, which is later used to give a
geometric proof of the Sum Identity for the sine and cosine functions.
For students who have adequate preparation in geometry, Chapter 1
may be treated quickly as a review in geometry. Exercises in Chapter 1
that are referred to later in the text are marked with an asterisk.

Our treatment of trigonometry itself progresses from the concrete
to the abstract in stages. The trigonometric functions for acute angles
are defined in Section 2.1 in terms of right triangles, and these functions
are given their usual geometric interpretations in terms of the unit
circle. Section 2.2 is devoted to elementary identities whose proofs are
based on algebraic manipulations. Geometric derivations of several
important identities are given in Section 2.3. The Laws of Cosines and

vii



viii

Preface

Sines and the use of the calculator for finding inverse cosines and
inverse sines when the desired angles are in a triangle are presented in
Sections 2.4 and 2.5. Chapter 2 ends with applications of trigonometry
to areas—notably Heron’s Formula—and vectors.

Chapter 3 is devoted to analytic trigonometry and the unified
derivation of all the trigonometric identities. The trigonometric func-
tions are developed both in terms of a point on an angle in standard
position and in terms of a unit circle. Chapter 4 studies the graphs of the
trigonometric functions and Chapter 5 presents the inverse trigono-
metric functions and their graphs along with techniques for solving
trigonometric equations. Finally, Chapter 6 contains sections showing
how trigonometric functions are used in the study of complex numbers
and polar coordinates.

Chapters 1 and 2 form a complete course in right triangle
trigonometry. Chapters 3, 4, 5, and 6 along with parts of Chapters 1 and
2 form a complete course in analytic trigonometry. If time is a problem
or if a less geometrically developed course is desired, Sections 2.3, 2.6,
and 2.7 may be treated as optional; and any topics of Chapter 1 may be
presented as needed. Also, the Laws of Cosines and Sines may be
postponed until the analytic trigonometry is fully developed.

The text is supplemented with over 400 accurately scaled figures,
numerous illustrative examples, and remarks that draw special attention
to certain ideas. All major theorems and definitions are set off by boxes
for emphasis. Many sections end with a historical note designed to
enrich the student’s understanding and appreciation of the material.

We have tried to spread out the applications by including some of
them, as well as other types of word problems, in most of the exercise
sets. Many of these problems are related to geometric constructions and
derivations of identities. Each section also generally includes many
exercises requiring computations. We expect the student to make full
use of a scientific calculator throughout the text. Trigonometric tables
and their uses are discussed in an appendix. For the student having
access to a computer, we have included computer programs at the end
of many of the exercise sets. Following each chapter is a chapter
summary, a set of miscellaneous exercises that may be used to enhance
the material discussed in that chapter, and a sample test.

The following supplementary materials are available from the
publisher: a Student Solutions Manual, which contains detailed solutions
to selected exercises; an Instructor’s Solutions Manual, which provides
solutions for all the exercises; and IBM PC software. The software
includes EXPTEST with a computerized test bank and TrueBASIC™
Pre-Calculus, which is ideal for classroom demonstrations and student
exploration.

Our thanks go to the students at Miami-Dade Community College
who classroom-tested the entire text. Also, we wish to thank the
following reviewers who helped refine this text: Arthur P. Dull, Diablo
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Valley College; Michael D. Eurgubian, Santa Rosa Junior College;
Ferdinald Haring, North Dakota State University; William L. Hinrichs,
Rock Valley College; Daniel H. Lee, Southwest Texas State University;
Rebecca F. Porter, Truckee Meadows Community College; Karen
Robinson, Aims Community College; Dorothy Schwellenbach, Hartnell
College; Ken Seydel, Skyline College; John Snyder, Sinclair Com-
munity College; Donna M. Szott, South Campus—Community College
of Allegheny County; and Ann Thorn, College of DuPage.

The organization of this text is due in part to these experiences
along with our desire to enrich the student’s understanding and
appreciation of geometrical constructions and trigonometric identities.

Charles W. Gantner
Thomas E. Gantner
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Introduction

The word trigonometry is derived from two Greek words, trigonon and
metria, that together mean triangle-measurement. As its name implies,
trigonometry was developed from the study of the relationships among
the sides and angles of a triangle. Triangles are a geometric concept, but
trigonometric relationships are numerical quantities; thus the study of
trigonometry involves both geometry and arithmetic.

Initial developments in trigonometry occurred during the period
250 B.C. to A.D. 150 through the efforts of Greek scholars who were using
geometrical methods in the study of astronomy. As early as 250 B.c.
Eratosthenes of Cyrene, the head librarian at Alexandria, used geo-
metrical methods to estimate the circumference of the earth. Around
140 B.c. Hipparchus of Nicaea began to use trigonometric methods in a
systematic way to study astronomy and hence he is regarded as the
founder of the subject. The early development of trigonometry reached
a climax around A.p. 150, when Claudius Ptolemy completed his work,
the Almagest, which was regarded as the major work on astronomy and
trigonometry for over a thousand years. However, the roots of
trigonometry extend back to around 3000 B.c., when the great empire
societies of Babylon and Egypt began to evolve. Let us briefly trace
some of these roots of the development of trigonometry.

In response to the needs of their social systems, Babylonian and
Egyptian mathematicians developed an extensive and sophisticated
body of arithmetic and geometric facts. In social systems involving
millions of people, land measurements had to be made for the purpose
of taxation; large public buildings and monuments had to be designed
and erected; and astronomical calculations had to be made in order to
develop an accurate calender. The problems of this period, which
extended roughly from 3000 B.c. to around 600 B.c., were very specific in
nature, and they required numerical answers. Our knowledge of the
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