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Preface

The scope of this book is limited to the study of discrete time dynamic
processes evolving over an infinite horizon. Its primary focus is on mod-
els with a one-period lag: “tomorrow” is determined by “today” through
an exogenously given rule that is itself stationary or time-independent.
A finite lag of arbitrary length may sometimes be incorporated in this
scheme. In the deterministic case, the models belong to the broad math-
ematical class, known as dynamical systems, discussed in Chapter 1,
with particular emphasis on those arising in economics. In the presence
of random perturbations, the processes are random dynamical systems
whose long-term stability is our main quest. These occupy a central place
in the theory of discrete time stochastic processes.

Aside from the appearance of many examples from economics, there
is a significant distinction between the presentation in this book and that
found in standard texts on Markov processes. Following the exposition in
Chapter 2 of the basic theory of irreducible processes, especially Markov
chains, much of Chapters 3—5 deals with the problem of stability of
random dynamical systems which may not, in general, be irreducible.
The latter models arise, for example, if the random perturbation is limited
to a finite or countable number of choices. Quite a bit of this theory is
of relatively recent origin and appears especially relevant to economics
because of underlying structures of monotonicity or contraction. But it
is useful in other contexts as well.

In view of our restriction to discrete time frameworks, we have not
touched upon powerful techniques involving deterministic and stochastic
differential equations or calculus of variations that have led to significant
advances in many disciplines, including economics and finance.

It is not possible to rely on the economic data to sift through vari-
ous possibilities and to compute estimates with the degrees of precision
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X Preface

that natural or biological scientists can often achieve through controlled
experiments. We duly recognize that there are obvious limits to the
lessons that formal models with exogenously specified laws of motion
can offer.

The first chapter of the book presents a treatment of deterministic
dynamical systems. It has been used in a course on dynamic models in
economics, addressed to advanced undergraduate students at Cornell.
Supplemented by appropriate references, it can also be part of a graduate
course on dynamic economics. It requires a good background in calculus
and real analysis.

Chapters 2—6 have been used as the core material in a graduate course
at Cornell on Markov processes and their applications to economics. An
alternative is to use Chapters 1-3 and 5 to introduce models of intertem-
poral optimization/equilibrium and the role of uncertainty. Complements
and Details make it easier for the researchers to follow up on some of
the themes in the text.

In addition to numerous examples illustrating the theory, many ex-
ercises are included for pedagogic purposes. Some of the exercises are
numbered and set aside in paragraphs, and a few appear at the end of
some chapters. But quite a few exercises are simply marked as (Exercise),
in the body of a proof or an argument, indicating that a relatively minor
step in reasoning needs to be formally completed.

Given the extensive use of the techniques that we review, we are unable
to provide a bibliography that can do justice to researchers in many
disciplines. We have cited several well-known monographs, texts, and
review articles which, in turn, have extended lists of references for curious
readers.

The quote attributed to Toni Morrison in Chapter 1 is available on the
Internet from Simpson’s Contemporary Quotations, compiled by J. B.
Simpson.

The quote from Shizuo Kakutani in Chapter 2 is available on the In-
ternet at www.uml.edu/Dept/Math/alumni/tangents/tangents_Fali2004/
MathInTheNews.htm. Endnote 1 of the document describes it as “a joke
by Shizuo Kakutani at a UCLA colloquium talk as attributed in Rick Dur-
rett’s book Probability: Theory and Examples”” The other quote in this
chapter is adapted from Bibhuti Bandyopadhyay’s original masterpiece
in Bengali.

The quote from Gerard Debreu in Chapter 4 appeared in his article in
American Economic Review (Vol. 81, 1991, pp. 1-7).
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The quote from Patrick Henry in Chapter 5 is from Bartlett’s Quota-
tions (no. 4598), available on the Internet.

The quote attributed to Freeman J. Dyson in the same chapter appeared
in the circulated abstract of his Nordlander Lecture (“The Predictable and
the Unpredictable: How to Tell the Difference”) at Cornell University on
October 21, 2004.

The quote from Kenneth Arrow at the beginning of Chapter 6 appears
in Chapter 2 of his classic Essays in the Theory of Risk-Bearing.

Other quotes are from sources cited in the text.
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Dynamical Systems

Not only in research, but also in the everyday world of politics and economics,
we would all be better off if more people realized that simple nonlinear systems
do not necessarily possess simple dynamical properties.

Robert M. May

There is nothing more to say — except why. But since why is difficult to handle,
one must take refuge in how.
Toni Morrison

1.1 Introduction

There is a rich literature on discrete time models in many disciplines —
including economics — in which dynamic processes are described for-
mally by first-order difference equations (see (2.1)). Studies of dynamic
properties of such equations usually involve an appropriate definition
of a steady state (viewed as a dynamic equilibrium) and conditions that
guarantee its existence and local or global stability. Also of importance,
particularly in economics following the lead of Samuelson (1947), have
been the problems of comparative statics and dynamics: a systematic
analysis of how the steady states or trajectories respond to changes in
some parameter that affects the law of motion. While the dynamic prop-
erties of linear systems (see (4.1)) have long been well understood, rela-
tively recent studies have emphasized that “the very simplest” nonlinear
difference equations can exhibit “a wide spectrum of qualitative behav-
ior,” from stable steady states, “through cascades of stable cycles, to a
regime in which the behavior (although fully deterministic) is in many
respects chaotic or indistinguishable from the sample functions of a ran-~
dom process” (May 1976, p. 459). This chapter is not intended to be a
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2 Dynamical Systems

comprehensive review of the properties of complex dynamical systems,
the study of which has benefited from a collaboration between the more
“abstract” qualitative analysis of difference and differential equations,
and a careful exploration of “concrete” examples through increasingly
sophisticated computer experiments. It does recall some of the basic re-
sults on dynamical systems, and draws upon a variety of examples from
economics (see Complements and Details).

There is by now a plethora of definitions of “chaotic” or “complex”
behavior, and we touch upon a few properties of chaotic systems in
Sections 1.2 and 1.3. However, the map (2.3) and, more generally, the
quadratic family discussed in Section 1.7 provide a convenient frame-
work for understanding many of the definitions, developing intuition and
achieving generalizations (see Complements and Details). It has been
stressed that the qualitative behavior of the solution to Equation (2.5)
depends crucially on the initial condition. Trajectories emanating from
initial points that are very close may display radically different proper-
ties. This may mean that small changes in the initial condition “lead to
predictions so different, after a while, that prediction becomes in effect
useless” (Ruelle 1991, p. 47). Even within the quadratic family, com-
plexities are not “knife-edge,” “abnormal,” or “rare” possibilities. These
observations are particularly relevant for models in social sciences, in
which there are obvious limits to gathering data to identify the initial
condition, and avoiding computational errors at various stages.

In Section 1.2 we collect some basic results on the existence of fixed
points and their stability properties. Of fundamental importance is the
contraction mapping theorem (Theorem 2.1) used repeatedly in subse-
quent chapters. Section 1.3 introduces complex dynamical systems, and
the central result is the Li—Yorke theorem (Theorem 3.1). In Section 1.4
we briefly touch upon linear difference equations. In Section 1.5 we ex-
plore in detail dynamical systems in which the state space is R, the set
of nonnegative reals, and the law of motion « is an increasing function.
Proposition 5.1 is widely used in economics and biology: it identifies
a class of dynamical systems in which all trajectories (emanating from
initial x in R, ) converge to a unique fixed point. In contrast, Sec-
tion 1.6 provides examples in which the long-run behavior depends on
initial conditions. In the development of complex dynamical systems,
the “quadratic family” of laws of motion (see (7.11)) has played a distin-
guished role. After a review of some results on this family in Section 1.7,
we turn to examples of dynamical systems from economics and biology.
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We have selected some descriptive models, some models of optimization
with a single decision maker, a dynamic game theoretic model, and an
example of intertemporal equilibrium with overlapping generations. An
interesting lesson that emerges is that variations of some well-known
models that generate monotone behavior lead to dynamical systems ex-
hibiting Li—Yorke chaos, or even to systems with the quadratic family as
possible laws of motion.

1.2 Basic Definitions: Fixed and Periodic Points

We begin with some formal definitions. A dynamical system is described
by a pair (S, o) where S is a nonempty set (called the state space) and o
is a function (called the law of motion) from § into S. Thus, if x; is the
state of the system in period ¢, then

X1 = a(xy) @.1)

is the state of the system in period ¢ + 1.

In this chapter we always assume that the state space S is a (nonempty)
melric space (the metric is denoted by d). As examples of (2.1), take S
to be the set R of real numbers, and define

a(x)=ax + b, (2.2)

where a and b are real numbers,
Another example is provided by S = [0, 1] and

a(x) = 4x(1 — x). 2.3)

Here in (2.3),d(x, y) = |x — y|.
The evolution of the dynamical system (R, o) where « is defined by
(2.2) is described by the difference equation

Xpp1 = ax; + b. (24)

Similarly, the dynamical system ([0, 1], o) where « is defined by (2.3)
is described by the difference equation

X4l = 4x(1 — x¢). 2.5)

Once the initial state x (i.e., the state in period 0) is specified, we write
a®(x) = x, a!(x) = a(x), and for every positive integer j > 1,

o/ (x) = a(a/(x)). (2.6)



4 Dynamical Systems

We refer to o/ as the jith iterate of a. For any initial x, the trajectory
from x is the sequence (x) = {a’ (x)720}. The orbit from x is the set
y(x) = {y: y = &/(x) for some j > 0}. The limit set w(x) of a trajectory
7(x) is defined as

w(x) = [ [t/ )], 2.7)
j=1

where A is the closure of A.

Fixed and periodic points formally capture the intuitive idea of a sta-
tionary state or an equilibrium of a dynamical system. In his Foundations,
Samuelson (1947, p. 313) noted that “Stationary is a descriptive term
characterizing the behavior of an economic variable over time; it usually
implies constancy, but is occasionally generalized to include behavior
periodically repetitive over time.”

A point x € §'is a fixed point if x = w(x). A point x € § is a periodic
point of period k > 2 if a*(x) = x and a/(x) # x for | < j < k. Thus,
to prove that x is a periodic point of period, say, 3, one must prove that
x is a fixed point of o® and that it is not a fixed point of & and 2. Some
writers consider a fixed point as a periodic point of period 1.

Denote the set of all periodic points of S by g(S). We write ®(S) to
denote the set of nonperiodic points.

We now note some useful results on the existence of fixed points of c.

Proposition 2.1 Let S = Rand o be continuous. If there is a (nondegen-
erate) closed interval I = [a, b] such that (i) a(1) C I or (i) a(I) D I,
then there is a fixed point of o in I.

Proof.

(i) Ifa(f) C I,thena(a) > aand a(b) < b.Ifa(a) = aora(b) = b,
the conclusion is immediate. Otherwise, a(a) > a and a(b) < b. This
means that the function B(x) = a(x) — x is positive at a and negative
at b. Using the intermediate value theorem, 8(x*) = 0 for some x* in
(a, b). Then a(x*) = x*.

(ii) By the Weierstrass theorem, there are points x,, and x, in
such that a(x,,) < a(x) < a(xy) for all x in I. Write a(x,) = m and
a(xy) = M. Then, by the intermediate value theorem, «(I) = [m, M].



