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CHAPTER 9

A-Discriminants

We now introduce the second main object of study: the A-discriminant A 4.
1. Basic definitions and examples

A. Definitions and first examples

Our setup now will be the same as in Section 1, Chapter 5. Namely, we choose a
finite subset A in the integral lattice Z*~! whose elements w correspond to Laurent
monomials x* = x}" --.x;*7" in k — 1 variables. We consider the space C* of

Laurent polynomials of the form f(x) = )" _, a,x®.

We let Vo  C* denote the set of all f for which there exists x©@ e (C*)*!
such that

f(x(o)) — (af/axi)(x(o)) =0 for all i. (I.D

Let V4 be the closure of Vj. It is not hard to see that V4 is an irreducible variety
defined over Q. Indeed, let X 4 be the toric variety associated to A (Section 1B
Chapter 5). Then we have the following fact, which is obvious from the definitions.

Proposition 1.1. The variety V4 is conical, i.e., it is invariant under the multi-

plication by scalars. Its projectivization P (V) is the variety projectively dual to
Xa.

Now we can give the definition of the A-discriminant.

Definition 1.2. If the set A C Z*~! has the property that V4,  C# is a subvariety
of codimension 1, then by the A-discriminant we mean an irreducible integral
polynomial A 4(f) in the coefficients a,, @ € A of f € C* which vanishes on
V4. Such a polynomial is uniquely determined up to sign. If codimV,4 > 1, we
set Ay = 1.

Thus A4 is a particular case of the general discriminants defined in Chapter
1: under the notation of that chapter, we have Ay, = Ay,. We start with some
simple properties and then give basic examples.

Proposition 1.3. The polynomial A, is homogeneous. In addition, it satisfies
(k — 1) quasi-homogeneity conditions: for all monomials naz(“’) in Aga, the
vector y_m(w) - w € Z¥1 is the same.
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Proof. If f € V4 and Ay, Ay, ..., Ak—1 are nonzero numbers, then the polynomial
8(x1, ..oy xk—1) = Ao f (Mixy, ooy Ag—1Xk-1)
is obviously in V4 as well. This implies our proposition.

In fact, the variety V4, and hence also the polynomial A 4, depend only on
the affine geometry of A ¢ Z*~!.

Proposition 1.4. Let A ¢ Z*~!, B ¢ 2" be two finite subsets and T : "' —
Z™" ! be an integral affine transformation which is injective and such that T (A) =
B. Then under the corresponding identification of C* and C&, the variety V 4 is
identified with Vg and the polynomial A 4 is identified with A .

Proof. In this case X4 and X p are naturally identified (Proposition 1.2, Chapter
5). Hence the projectively dual varieties are also identified.

Remark 1.5. The above proposition means, in particular, that we can shrink,
if necessary, the affine lattice Z*~! containing A to the lattice Affz(A), affinely
generated over Z by A (see Definition 1.3, Chapter 5).

Examples 1.6. We consider the same choices of sets A which were discussed in
Examples 1.1, Chapter 5.

(a)Let A consist of all monomials of degree < d ink—1 variables xj, ..., Xk—1.
The space C* consists of all polynomials f(x,, ..., xx_;) of degree < d. Equiv-
alently, let A consist of all homogeneous monomials in k variables xy, ..., x; of

degree exactly d. Then C* is the space SYC* of forms of degree d in k variables.
There is an obvious identification

C* > CY  flr,...,x) e f(x, ..., X1, 1),

which takes A; to A4. The polynomial A is the classical discriminant of a
form of degree d in k variables, discussed in Example 4.15 Chapter 1. Recall, in
particular, Boole's formula deg A = k(d — 1)¥71.

(b) Let A consist of bilinear monomials x; - y;, where the x; and y; (i =
1,...,m; j=1,...,n) are two sets of variables. Then C* consists of bilinear
forms f(x,y) = Za,-,-xi y; and is identified with the space of m x n matrices
llaij|l. The A-discriminant A4(f) = Aa(lla;;|]) is identically equal to 1 unless
m = n, and in this case it is the determinant of the square matrix ||a;;||. The
monomials in A 4(f) have an obvious combinatorial significance: they correspond
to the permutations of the set of m elements, and the coefficients are the signs of
the permutations. This explains our interest in the monomials appearing in the
A-discriminant in other cases.
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(b') Let A consist of trilinear monomials
Xi Y2, i=1,...,m;,j=1,...,mg, 1=1,---,m3-

The previous example makes it natural to refer to the A-discriminant of a polyno-

mial
mi mp; mj3

ZZ aijkXiyj2l € CA

i=1 j=1 I=1

-

as the hyperdeterminant of the three-dimensional “matrix” ||g;;;||. This concept
(and its obvious generalization to higher-dimensional “matrices”) was introduced
by Cayley [Cal] at almost the same time as that of the determinant of a square
matrix. Hyperdeterminants were later studied by Schlifii [Schi] and, after the break
of almost 150 years, by the authors [GKZ3]. In view of the previous example, the
monomials in the hyperdeterminant form a “higher analog” of the symmetric group.
We shall present our treatment of the hyperdetermirants in Chapter 14. (We note
that there is another notion of the “determinant” of a multidimensional matrix which
is different from ours ( see, e.g., [P] [So]). It is based ou a direct generalization
of the determinant formula for a square matrix and includes a summation over the
product of several symmetric groups.)

(c) Let A consists of monomials

2

1L,x,x% ..., xP, y, yx, yx2, ..., yx9.

Then C* consists of polynomials ® (x, y) = f(x)+ yg(x) where f, g are polyno-
mials in one variable x of degrees not greater than p or g, respectively. In this case

A4(P) = R(f, g) is the classical resultant of f and g (see Example 3.6 Chapter
3). This relation holds in a more general context.

LetA;, ..., Ay C Z* ! be finite subsets satisfying the assumptions of Section
1A, Chapter 8. Let R4, 4, be the (A, ..., Ay)-resultant; it is a function of £
polynomials f; € C*. Let A € Z*~% = Z*~' x Z*~! be the following set:

A=Ay x{ethU- - U (A1 x {ex-1) U (Ax x {0]), (1.2)

where the e; are the standard basis vectors of Z*~!. Then C# is the space of
polynomials of the form

k—1
fily+ ) yifilx),
i=1

where f; € C%. We have the following statement (“Cayley trick”).
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Proposition 1.7. We have

k-1
Ra,..a(fry.oo, fi)= AA(fk(X) +Z)'ifi(x)>-

i=1

Proof. This follows from Corollary 3.5, Chapter 3 about the relation between
projectively dual and associated varieties. The proof is so simple that we repeat
it here for our particular case. If x© is a common root of (fi, ..., fi), then we

can find )(O) cees y,EO)l such that the polynomial f; + ) y; f; vanishes at the point
yfo), cey y,io)l, xfo), .. (O) along with its first derivatives. We do this by solving

a linear system. Conversely, if (3@, x©@) is such a point, then

a(fk + Z, 1 y, 1
dyi (x©@,y©)

ﬁ(x(O)) =0

forl <i <k-—1,andso fi(x©@) =0 as well.

B. The case of a circuit

Let A C Z*! be a circuit. This means (see Section 1B, Chapter 7) that A is
affinely dependent, but any proper subset of A is affinely independent. In this
case the A-discriminant A 4 can be calculated explicitly. We present this formula,
following Kouchnirenko [Kou].

We can assume that A generates Z*~' as an affine lattice. So #(A) = k + 1.
There is, up to scaling, just one affine relation between elements of A:

Y myw=0, Y m,=0. (1.3)
weA weA
We normalize such a relation uniquely up to sign by requiring that all m,, be integers
with the greatest common divisor equal to 1. Note that

|mg| = Volgzi-1 (Conv(A — {w}))

Let A, A_ C A be the sets of w such that m,, is positive (resp. negative).

Proposition 1.8. Suppose that A C Z*7' is a circuit which generates Z*7" as
an dffine lattice. Let f =) _, a,x® be an indeterminate polynomial from ct
Then the A-discriminant of f is a non-zero scalar multiple of the polynomial

) - () oo

‘WEA weA_ wEA_ wEA
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where the m,, are defined as above.

Prooy. First, we show that the polynomial (1.4) vanishes for f € Vj, i.e., when
the system (1.1) has a solution x©@ e (C*)*~!. Indeed, (1.1) can be written as

Zaw(x(o))"’ =0, Za,_,,(x(o))“’ cw=0. (1.5)

wEA weA

Comparing (1.5) with (1.3) we conclude that the vectors (a,(x®)®),ea and
(My)wea are proportional to each other. To eliminate x @, we apply to both vectors
the function (yo)wea F> [l e Yoe (since ) _, m, = 0, this function takes the
same value at proportional vectors). We obtain the equality

I1 (;—j)m =1 (1.6)

wEA

its polynomial form is exactly the vanishing of (1.4).

Conversely, suppose (1.4) vanishes at some f € C*. We can assume that f
is generic, so that all g, are non-zero. This implies (1.6), i.e., that the vector with
components (y, = ,",’,%)we 4 satisfies the relation

[JEAEST (1.7)

w€eA

Using the fact that A affinely spans 7K it s easy to see that every solution
of (1.7) has the form (y, = c¢(x®)~®) for some non-zero constant ¢ and some
x©@ e (C*)¥-1, This, in turn, implies f € V.

The above arguments show that (1.4) defines V4 set-theoretically. So, up to
a scalar multiple, it must be a power of A,4. But, since it is a sum of only two

monomials, we conclude that it can be only the first power of A 4, which completes
the proof.

2. The discriminantal complex

The problem of finding the A-discriminant A 4, raised in Section 1, is a special
case of a more general problem addressed in Chapter 1: finding the equation of
XV, the projectively dual variety to a given projective variety X C P"~!. In our
present case X is the toric variety X 4.

Suppose that a projective variety X is smooth. In Theorem 2.5 of Chapter
2 we have represented the equation of XY as the determinant of the so-called
discriminantal complex. The terms of this complex consist of some differential
forms on the affine variety Y < C" which is the cone over X (see Section 4,
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Chapter 2). In our present situation we can make the complexes more explicit
using a description of differential forms on tori and toric varieties going back
to Danilov [D], see also [O]. For the convenience of the reader we recall this
description from scratch, starting with the case of a torus.

A. Differential forms on a torus

Let H = (C*)* be a torus and let & = Hom(H, C*) = Z* be its character lattice.
The ring C[H] of regular functions on A is identified with the group algebra C[Z]
of E. This means that we can regard a Laurent polynomial

Fix) = Zawx e C[H

weZF

as a complex-valued function w +> a, with finite support on & = Z*. In this
language the multiplication in C[H] is given by the convolution product: if (a,,)
and (b,,) are elements of C[ H] then their product (c,,) is given by

Z ayb,

W' +o'=w

We want to describe in similar terms the de Rham complex formed by the
Q' (H), the spaces of regular differential i-forms on H.

Let Ec = E ® C be the complexification of the free Abelian group E. By
a discrete vector field on E we shall mean an assignment w +— v, which takes
any w € E to a vector v, € E¢ such that v,, = 0 for all but finitely many w. For

w € B, v € Ec, we denote by (w, v) the discrete vector field equal to v at w and
0 elsewhere.

l;x P .'I:a d(:l:ﬂ) $0+ﬁ

NS
|////| d(z%)
| ag s | L

uz\\|

———— 0 d@&f) =o°

a)

Figure 41. (a) A discrete vector field on Z2
(b) The proof of the Leibniz rule
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Denote by Vec'(Z) the space of all discrete vector fields on Z. Clearly
Vec!(E) is a free C[Z]-module of rank k under the obvious convolution product

C[E] ® Vec! (B) — Vec(B), x*Q® (w,v) > (w+a,v). (2.1)

Proposition 2.1. There is a canonical isomorphism ¢ : QU(H) — Vec!(Z) of
C[E])-modules. This isomorphism takes d(x?) € QY (H) into the discrete vector
field (y, —y).

Geometrically, the field (y, —y) is just one vector at the point y which joins
this point with O (see Figure 41 b).

Proof. By associating to x®d (x#) the discrete vector field (o« + B, —B) we get the
required isomorphism. The inverse isomorphism is defined as follows:

d(x")

xv

(w,v) » —x“. = —x“.dlog(x"), (2.2)

where v € E. This correspondence is additive in v and hence extends to any
v € Ec by linearity.

It is instructive to see the validity of the Leibniz rule d (x**#) = x%d (x#) +
x#d(x®) in the language of discrete vector fields (Figure 41 b).

Let us introduce the space Vec'(Z) of discrete i-vector fields on E whose
elements are finitely supported functions w +— A, mapping & to /\i (Ec). For any
we Zand X € /\i(EC) we shall denote by (w, A) the discrete i-vector field on E
equal to A at w and 0 elsewhere.

The space Vec®Z is just the group algebra C[E]. We have multiplication

Ve E® Vec/ B — Vec'VE, (0, M@ () (@+n, AAp). (2.3)

Proposition 2.2. The space Q' (H) of regular differential i-forms on H is naturally
identified (as a C{H-module) with Vec' (2). Under this identification the exterior
product in Q*(H) corresponds to the product (2.3) on Vec®*(Z). The exterior
derivative of a form represented by a discrete i-vector field w +— A, on E is
represented by the discrete (i + 1)-vector field w — X, A (—w).

Proof. The isomorphism in question takes
xOd(xXYA - Ad(X®) > (=D (o + -+ oy, o A Aa).
The inverse isomorphism takes

d(xﬂx) L d(xﬂ")

(a,ﬂl/\--~/\ﬁ,~)»—>(—l)"x"~—xﬁ—l A T

(2.4)
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where @, B; € E. The correspondence (2.4) is additive in the B’s and extends to
the arbitrary 8; € Ec by linearity.

B. Differential forms on an affine toric variety

Let 2 = Z be a free Abelian group of rank k. Let S C E be a finitely generated
semigroup containing 0 and generating E as a group. Let Ez be the real vector
space Z® R and let K C Ey be the convex hull of S. This is a convex polyhedral
cone with apex 0. For any face I' C K, we denote by Lin¢(I") the smallest C-
vector subspace in E¢ containing I'. Clearly, the complex dimension of Lin¢(I")
equals the dimension of I in the usual sense. For example, Lin¢ (K) is the whole
Ec. Forany w € §, let ' (w) be the smallest face of K containing w. In particular,
if w lies in the interior of K then I'(w) = K.

Definition 2.3. Denote by Vec' (S) the space of discrete i-vector fields (A,) on E
with the properties:

(a) vb =0ifw ¢ S,

(b) forany w € S we have v, € /\i Linc (I'(w)).

Figure 42 illustrates this definition.

Figure 42. A discrete vector field from Vec'(S)

As in subsection A, forw € Sand A € /‘\i Linc(I"(w)), we denote by (w, 1)
the discrete i-vector field equal to A at w and 0 elsewhere.

Clearly, Vec’(S) is the semigroup algebra of S. The multiplication (2.3)
restricts to the multiplication

Vec' S ® Vec/ S —» Vec' /S, (2.5)

Withrespectto (2.5), Vec' Sisa finitely generated module over C[S] = Vec’s.
Let us also define the “exterior derivative”

d:Vec'S - Vec'*'S, d((w,))) = (0, —w AN). (2.6)
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Proposition 2.4,
(a) The maps d satisfy d* = 0 and the Leibniz rule thus making the direct sum
Vec*S = P, Vec'S into a supercommutative differential graded algebra.
(b) IfS =175 x Z° then Vec'S is identified with the space of regular differential
i-forms on C* x (C*)°, and (2.5) and (2.6) coincide with the usual exterior
multiplication and differential.

Proof. Obvious.

Let Y = Spec C[S] be the affine toric variety corresponding to S. By Serre’s
theorem [Hart] any module over the coordinate ring of an affine algebraic variety
gives rise to a coherent sheaf on this variety. In our case we consider the C[S]-
module Vec'S. The coherent sheaf on ¥ corresponding to this module will be
denoted by Q‘Y and called the sheaf of Danilov i-forms on Y.

Theorem 2.5.
(a) Let Y, be the smooth locus of Y. Then the restriction of S~2'y to Yy, is naturally
identified with the sheaf of regular differential i-forms on Y.
(b) The maps (2.3) and (2.6) extend to morphisms of sheaves on Y

Qe > O, 4.8, - Qi 2.7)

whickh, after restriction to Y;,,, coincide with the usual exterior multiplication
and differential on forms.

Proof. Clearly, Y, is a union of open subsets of the form C% x (C*)? invariant
under the torus action. The coordinate ring of any such subset in Y has the form
C[S’] where S’ is obtained from S by inverting some elements. Our statement now
follows from Proposition 2.4 (b) and the identification

Vec' (8') = Vec'S ®cs) CLS'],
which can be verified immediately.

C. Combinatorial description of the discriminantal complex

Let A ¢ Z'7! be a finite set of n lattice points (=Laurent monomials) and let
X4 C P! be the corresponding toric variety, see Section 1B, Chapter 5. Let us
assume that X 4 is smooth and has dimension k — 1. In this case the formalism of
Chapter 2 is applicable and we can represent the A-discriminant, i.e., the equation
of the variety projectively dual to X,, as the determinant of the discriminantal
complex

Ax(f) = const - det(C(X 4, M), 87, &)V (2.8)
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where M is a sufficiently ample invertible sheaf on X4 (Theorem 2.5, Chapter 2).
We take M = O(l), ! > 0. We shall use the results of the previous subsection to
describe this complex quite explicitly.

Shrinking, if necessary, the lattice ZF', we can assume that it is affinely
generated by A. As before, we embed Z*~! into a free Abelian group & = ZF =
Z*~! x Z as the set of lattice points with the last component equal to 1. We denote
by h : E — Z the projection given by this last component.

Let S C E be the semigroup generated by A and 0. The semigroup algebra
C[S] is graded by means of 4 (i.e., the degree of the monomial t“, u € S, is set
to be A(u)). Under this grading C[S] is the homogeneous coordinate ring of the
projective toric variety X 4 and also the affine coordinate ring of the affine toric

variety Y4 (the cone over X 4). The space C# is embedded into C[S] as the graded
component of degree 1.

Let ! be an integer. Consider the graded vector space C*(A, [), where

ciah= @@ /\LincTw). (2.9)
ueS. h(u)=Il+i
Let us denote a typical element in the u-th summand of Ci(A, 1) by (u, A) where
A € N\ LincI(u). Forany f(x) =) .4 dwx® € C#, we define the differential
3r : CH(A, ) - C'(A, ) by

0, M) ==Y ay (@+u,wAl). (2.10)

weA

It is straightforward to see that 87 = 0.

Theorem 2.6. Assuine that X 4 is smooth. For [ > 0 the complex (C*(A, 1), 05)
coincides with the discriminantal complex (C$ (X 4, O(1)), 9y).

Proof. By Corollary 4.2, Chapter 2, the space C ir(X 4, O()) (denoted there by
C'(X 4, 1)) is identified with the space of differential i-forms on ¥ — {0} homoge-
neous of degree i +/. On the other hand, (2.9) is the (i 4/)-th graded component of
the C[S]-module Vec'S with respect to the following grading: deg (u, 1) = h(u).

This grading is obviously compatible with the similar grading on C[S] defined
above.

By our assumption X 4 is smooth and hence Y, — {0} is the smooth locus of
Y4. So the sheaf S'Z‘;,A on Y4 corresponding to Vec'S is identified, after restriction
to Y4 — {0}, with the sheaf of i-forms Q’YA_{O}. Note that Theorem 2.5 gives a
natural homomorphism of vector spaces

® : Vec'S —> {i-forms on Y, — {0}}. (2.11)
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Let j : Yo — {0} < Y4 be the embedding. Since the point 0 has codimension
at least 2 in Y4, the direct image under j of any coherent sheaf on ¥4 — {0}, in
particular, of the sheaf Q‘}'A—{op is a coherent sheaf on Y. The homomorphism &
comes (by taking global sections) from a morphism

Q: Q‘YA — j*Q‘YA_{O}

of coherent sheaves on ¥4 whose existence follows from Theorem 2.5. Since ¢ is
an isomorphism outside 0, it follows that Ker ¢ and Coker ¢ are coherent sheaves
on Y supported at 0. Therefore, by taking global sections, we find that Ker &
and Coker & are finite-dimensional vector spaces. Since both spaces in (2.11)
are graded, we conclude that, for / > 0, the induced map of (i + [)-th graded
components is an isomorphism, i.e.,

C' (X4, 0O) = CY(A, D).

The fact that the differentials in these complexes agree under this isomorphism
follows from Theorem 2.5 (b). Theorem 2.6 is proved.

The above theorem implies that (in the case of smooth X 4) the A-discriminant
equals const - D™V where D is the determinant of C* (A, [). We shall give amore
precise formula, valid up to sign.

Namely, consider the following system of bases in the vector spaces C* (A, [).
For any u € S the vector space LingcI"(#) contains a Z-lattice LinecI'(v) N E. We
choose any Z-basis in this lattice as a basis of LincI'(4). Correspondingly, we
choose the basis in /\i (Linc I (u)) formed by exterior products of basis vectors in
LincI'(1). Finally, we choose as a basis in the direct sum (2.9), the union of the

chosen bases in the summands. Let e be the resulting system of bases in the terms
Ci(A, ).

Theorem 2.7. Assume that X 4 is smooth. Then for | 3> 0 we have
Aa(f) = £det(C*(A, 1), 3, e) V.
Proof. Up to a constant factor, the statement follows from Theorem 2.5, Chapter

2. To prove it up to a sign, we proceed as in the proof of Theorem 2.5, Chapter 8.
Namely, we denote by C3(A, /) the natural Z-form of C*(A, ):

Cya.b= P /\Z(Lincr(u)ms).

ueS k(u)=I1+i
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Now let p be an arbitrary prime number, let F be the algebraic closure of Z/pZ
and consider the graded F-vector space

Cr(A,l)=C3(A, 1)@z F.

Forany f € F* we get a differential 8 in C3(A, [). As in the proof of Theorem
2.5 Chapter 8, it suffices for our purposes to show that, for generic f € F*,
the complex (Cr(A,I), d5) is exact. The description of differential forms on
a smooth toric variety given in subsection B, remains valid over a field of any
characteristic. So our statement is proved in the same way as generic exactness of
the discriminantal complex over C (Theorem 2.3, Chapter 2). This completes the
proof of Theorem 2.7.

D. The degree of the A-discriminant

We continue to assume that X 4 is smooth and that A affinely spans Z*~! over Z.
Let O ¢ R*! be the convex hull of A. For each face ' C Q, let Affg(I") be
the smallest real affine subspace containing I". This space comes equipped with
an affine Z-lattice Affz(I" N A) generated by I' N A. Since we assume X4 to be
smooth, this lattice coincides with Affg(I") N ZF~! (Corollary 3.2, Chapter 5).

As in Section 4D, Chapter 5, the above lattice gives rise to a volume form on
Affr (") normalized so that the volume of an elementary lattice simplex equals 1.
Let us denote this form as Volr.

Theorem 2.8. Suppose X, is smooth. Then the degree of homogeneity of the
A-discriminant equals

Z(—l)“’di"‘r(dim T +1) - Volp (D).
rco

In particular, this sum is always non-negative; it equals zero if and only if A4 = 1.

Proof. We retain the notation of the previous subsections. Thus § C Z* is the
semigroup generated by A and 0; it is graded by & : § — Z,. Denote by S the
graded component {# € S : h(u) = [}. We also need the convex hull X of S.
This is a polyhedral cone with apex 0 whose base is Q. We extend A to a linear
functional (denoted also k) from K to R and denote K;, = {u € K : h(u) = 1}.
Since X4 is assumed to be smooth and, in particular, normal, the intersection
K N ZF differs from S in finitely many points only.

Let " C Q be a face. Then the cone R, I" generated by I' is a face of K.
Let I'% be the interior of I'. Consider the set §; N R, T'°. By the above, for [ > 0
this set coincides with K; N R, T'°. Thus, for large /, the number # (S, N R, T?)
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coincides with the number of integer points in the / times dilated open polytope I'°.
It is known [D] that for / >> O this number is given by a polynomial in / which we
denote by pr (/) (it is closely related to the so-called Ehrhart polynomial counting
the number of integer points in the dilations of I', not I'%). The leading term of
this polynomial is, by Proposition 3.7, Chapter S,

Volr () jdimT
(dimTI)! '
By Corollary 14 from Appendix A, the degree of A, is equal to

k

deg(Aq) =Y (=D'i-dimC'(4, ).
i=0

By representing C' (A, 1) as a direct sum over u € S;; (see (2.9)) and separating
the «’s lying in different faces of K, we find that, for / > 0,

. dimI" 41
dim C'(4,h = Y ( mer )Pr(1+i)-
rco !

Substituting this expression into the above formula for deg (A 4) we obtain, after
some easy algebraic transformations, that

. diml‘ . ) dimr
deg (A4) = § :(—1)°°d"“r(dim1‘+ 1) 2 :(—1)""““'( l, )-pr(l+1+i).
rco i=0

To deduce Theorem 2.8 from this expression, we have only to show that the inner
sum is equal to Vol (I"). We shall use the following elementary lemma.

Lemma 2.9. Let p(t) = apt” + --- + a, be a polynomial of degree r. Then for
any value of t the sum y_._o(—1)'(7) p(t — i) is equal to rap.

The lemma is well-known; the easiest way to prove it is to observe that the
sum in question is the iterated difference A" p(t), where Ap(t) = p(t) — p(t — 1).

To complete the proof of Theorem 2.8, it is enough to apply Lemma 2.9 to
each polynomial p(¢) = pr(t +dim T + 1).

Examples 2.10. Let us illustrate Theorem 2.8 for the sets A in Examples 1.6.

(a) Let A consist of all monomials in xy, ..., x;—; of degree < d (or, equiv-
alently, of all homogeneous monomials in xy, ..., x; of degree d). Since X4 =
P*=1 is smooth, Theorem 2.8 is applicable. The polytope Q is the simplex

{(fx.-A-,fk—l)Gqu 15 >0, Z’i Sd}
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of dimension k — 1. Foreachi = 0, ..., — 1, this simplex has exactly (l+1)
faces of dimension 7, and each of them has the normalized volume equal to 4'. By
Theorem 2.8,

k—
dez(A,g)_Z(—-l)" 1= ‘(1+1)( +1>d"

—kki 1"—‘-"<k_1 d'k(d — 1)*! (2.12)
—i=0(—) i)(_)’ .

the last equality being the binomial formula. By Lemma 2.9, deg(A 4) is equal to
k(d — 1)*~1. This is Boole’s formula (see Examples 1.6 above).

(b) Let A consist of bilinear monomials x; - y;,i =1,...,m; j=1,...,n
The polytope Q is the product of two simplices A™~! x A"~ A face of Q is
given by a pair of non-empty subsets 7 C {1,...,m}, J C {1, ..., n} and is itself

a product A'"! x A/~! where i = #(I), j = #(J). The normalized volume of
such a face is (‘ +i= 2) Since X4 = P™! x P"!is smooth, the degree of A4 is
given by Theorem 2 8. We obtain

2
deg(AA)—ZZ( 1)'"+"“'*J(z+,—1)( )(1)(’“”1 ) (2.13)

i=1 j= b=

Without loss of generality, we can assume that n < m. To simplify (2.13) we

rewrite it as
Z( 1)( )p(m_,)

where p(t) is a polynomial of degree n given by

p(t)-Z( 1y J 1)‘(>t(t+1) (4D

Using Lemma 2.9, we see that deg (A 4) = 0 unless m = n, and in the latter case
deg (A4) = n. This is in accordance with the fact that A4 is identically 1 for
m % n and coincides with the determinant of a n x n matrix if m = n.

The above two examples have a common generalization to the case when A
consists of all multihomogeneous monomials of a given multidegree in several

groups of variables. An application of Theorem 2.8 to this case will be discussed
in Section 2, Chapter 13.

(c) Let A consist of monomials

2 m 22
Lix,x% ..., x", y,yx, yx°, ..., yx".
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The polytope Q is the trapezoid depicted in Figure 43.

(0, 1) (1,1) o (n, 1)

.

(0,0) (1,0) = (m,0)

Figure 43.

Its area normalized with respect to Z* is m 4 n. Under the normalizations
used in Theorem 2.8, the horizontal sides have lengths m and n, and two other

sides are of length 1. Four vertices of Q each should be ascribed the “volume” 1.
Hence Theorem 2.8 gives

deg(Ap) =3(m+n)—2m+n+2)+1-4=m+n.

This is in accordance with the interpretation of A 4 as the resultant of two polyno-
mials of degrees m and n in one variable, see Example 1.6 (c).

3. A differential-geometric characterization of A-discriminantal hypersur-
faces

In this section, which is based on [Kal], we exhibit one characteristic property of
discriminantal hypersurfaces regarded as hypersurfaces in tori. As we have seen
in Section 1, Chapter 6, the geometry of a hypersurface in a torus is closely related
to the Newton polytope of the Laurent polynomial defining this hypersurface. The
differential-geometric property described in this section can be compared with the

description. of the Newton polytope of the A-discriminant given in Chapter 11
below.

A. The Gauss map in an algebraic group

Let G be an algebraic group. For each g € G, let [, : G — G be the left
multiplication by g. Let g be the Lie algebra of G. Let Z C G be an irreducible
algebraic hypersurface (possibly with singularities). The (left) Gauss map of Z
is the rational map yz : Z — P(g*) which takes a smooth point z € Z into
dd; "(T,Z), i.e., to the translation to unity of the tangent hyperplane to Z at z.
This transiation is a hyperplane in 7,G = g, i.e., a point in P(g*).
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Note that both varieties Z and P(g*) have the same dimension. This raises
the following natural problem.

Problem. Classify algebraic hypersurfaces Z C G such thatyz : Z — P(g*) is
a birational isomorphism.

In what follows we shall consider only the case when G = (C*)™ is an
algebraic torus. In this case we shall refer to yz as the logarithmic Gauss map
since explicit formulas for it involve logarithmic derivatives.

It turns out that the above problem for tori can be completely solved and
the class of hypersurfaces in question essentially coincides with the class of A-
discriminantal hypersurfaces.

B. The reduced A-discriminantal variety

Let A C Z*~! be a finite subset of cardinality n, which generates Z*~! as an affine
lattice. Let V4 C C* be the corresponding discriminantal variety. We consider
the action of (C*)* on C* given by

oot fxy ey X)) = e f (X, ooy Bmi Xk—1)- (3.1)

This action preserves V4. Consider the subset (C*)* C C* as an algebraic torus
acting on cA componentwise. A point of (C*)# will be denoted as (z,,)wes Where
Z» € C*. Then (3.1) comes from a homomorphism of tori

@ (CH > (CHY, ot ... o =Hti" -1

Let ¢* : Z* — Z* be the dual homomorphism of character lattices. Since we
assume that A generates Z*! as an affine lattice, @* issurjective. Set L 4 = Kerg™.
Clearly, L 4 consists of all affine relations between elements of A, i.e., of families
(€o)wea, Co € Z such that

ch-a)zO and chzo.

w€eA wWEA

Let H(L4) = Spec C[L,] = Hom(L 4, C*) be the algebraic torus whose
character lattice is L 4. Then we have an exact sequence of tori

1 - (CY L €t L H(L,) — 1, (3.2)

where p is the natural projection. Since V, is (C*)*-invariant, the intersection
V4 N (C*)4 is the inverse image, under p, of some subvariety V4, C H (L 4) which



